Long-term rotation fertilisation has differential effects on soil phosphorus

Xue Li¹, Qiuxiang Wen², Shiyu Zhang¹, Na Li¹, Jinfeng Yang¹, Xiaori Han^{1,3}*

Citation: Li X., Wen Q.X., Zhang S.Y., Li N., Yang J.F., Han X.R. (2020): Long-term rotation fertilisation has differential effects on soil phosphorus. Plant Soil Environ., 66: 543–551.

Abstract: The application of organic fertiliser is a commonly used method to improve the utilisation efficiency of phosphorus (P) fertiliser. However, long-term over-fertilisation will cause environmental pollution. This study analysed a field test was conducted to study the impacts of P forms in soil under long-term (40 years) rotation fertilisation, to evaluate the contribution of different fertilisation to the available P form, to clarify how to apply pig manure to improve the concentration of available P forms. The results show that the main P compounds were orthophosphate and phosphate monoester. The combination of a high amount of manure and NPK fertilisers can increase the content of orthophosphate that can be absorbed and utilised by crops, the orthophosphate was 477.2 mg/kg, and phosphate monoester was 190.4 mg/kg. The long-term addition of nitrogen fertiliser significantly reduced the pH value of soil, and the addition of manure slowed down the trend of pH reduction. Furthermore, manure in combination with NPK fertiliser, can extremely increase the total P extracted by NaOH-EDTA by changing soil pH. The NaHCO₃-soluble P (Ca₂-P), NH₄Ac-soluble P (Ca₈-P), NH₄F-soluble P (Al-P), and occluded-P (O-P) were positively correlated with orthophosphate, while middle stable and high stable organic P was positively correlated with monophosphate.

Keywords: organic manure; soil P availability; P form change; plants available P; 31P nuclear magnetic resonance

The increase in soil phosphorus (P) content was observed in recent years as a result of increased P fertiliser application owing to its positive effect on crop yields and low P fertiliser prices (Xu et al. 2008). However, excessive fertilisation has become a serious issue that causes environmental pollution (Gao et al. 2006). Additionally, animal manure has begun to accumulate in large quantities owing to high animal populations. In an attempt to improve P efficiency, some places use crop straw and animal manure in large quantities, leading to soil pollution and other problems (Li et al. 2015). Therefore, reducing the use of mineral P fertiliser and partially supplementing

it with an organic fertiliser such as manure could be beneficial to the environment if done correctly. To achieve this goal, it is necessary to understand the forms of P in soil and how they are affected by long-term fertilisation strategies.

The distribution of different forms of P affects the transformation of soil P and absorption by crops (Condron et al. 2005, Cade-Menun 2017). ³¹P nuclear magnetic resonance (NMR) is an effective method for widely characterising the forms of extractable soil P, and it could provide detailed information on different forms of soil P (Cade-Menun 2017). There are many forms of organic P and inorganic P in the

Supported by the National Key Research and Development Program Institution, China, Project No. 2018YFD0300308, and by the China Agriculture Research System, China, Project No. CARS-13.

¹College of Land and Environment, Shenyang Agricultural University, Liaoning, P.R. China

²Huanren Manchu Autonomous County Agricultural Development Service Centre, Liaoning, P.R. China

³Scientific Observation and Experiment Station of Corn Nutrition and Fertilization in Northeast Agricultural and Rural Areas, Liaoning, P.R. China

^{*}Corresponding author: hanxr@syau.edu.cn

soil; however, only the soluble orthophosphate anion can be directly absorbed and utilised by plant roots (Condron et al. 2005, Richardson et al. 2011). Organic P can be divided into several phosphate-binding compounds, such as the common phosphate monoester and phosphate diester (Annaheim et al. 2015). Many studies have shown that different long-term fertilisation practices can change the composition of soil P (Stutter et al. 2015, Deiss et al. 2016); among them, the proportion of soil orthophosphate after long-term application of mineral P fertiliser is large (Ahlgren et al. 2013). Some studies also showed that the concentration of orthophosphate increases with an increase in mineral P fertiliser or organic P fertiliser; however, the concentration of phosphate monoester remains unchanged (Ahlqren et al. 2013). In this study, using a 40-year field experiment, we studied the effect of pig manure as an organic fertiliser on different forms of P in the soil to understand the correlation between fertilisation and specific forms of P and provide effective measures for environmental protection.

MATERIAL AND METHODS

Experimental site and design. In this study, a long-term site-based experiment was conducted which was established in 1979 in Shenyang Agricultural University (41°48'N, 123°33'E), China, and could be confirmed that the change in nutrients has a major role in the potency of soil P. The climate is mid-temperate. The annual average temperature over 7.0–8.1 °C, and annual precipitation is 574–684 mm. According to the FAO classification, soils were Haplic Luvisol (FAO/UNESCO 1996). The mode of crop rotation is corn-corn-soybean. A total of 32 plots

in the experimental area were divided into 8 treatment groups (4 replicates for each treatment), and the random block design was adopted, with a total of 160 m². The original soil in 1979 and the arable soil collected after the autumn harvest in 2018 (corn planting year) were selected as soil samples. The treatment selected for this test: (1) CK0 (the soil before planting in 1979); (2) CK (an unfertilised control in 2018); (3) NPK (mineral fertiliser NPK); (4) M1NPK (low amount of manure fertiliser plus NPK); (5) M2NPK (high amount of manure fertiliser plus NPK). Table 1 shows the basic properties of all treatments. The rate of low and high manure fertiliser was 13.5 t/ha/year and 27 t/ha/year for maize. Because the continuous application of manure tended to reduce the yields of soybean, soybean planting year had no manure fertiliser since 1992. The rate of N-P-K was 120-26-50 kg/ha/year for maize and 30-39-75 kg/ha/year for soybean. Mineral fertiliser: N - urea (N 46%); P - calcium superphosphate (P 5%); K – potassium sulfate (K 42%). Pig manure (dry) as manure fertiliser contains 83.5 g organic C/kg; 7.2 g N/kg; 3.8 g P/kg; 8.3 g K/kg on a 40-year average. All the fertilisers were applied basally at one time before sowing.

Soil sampling and analysis. Randomly selected five points each plot with an "S" shape and collected 20 cm depth of soil mixed the five soil samples as a composite soil sample. Total P was determined by NaOH fusion (Sommers and Nelson 1972). Olsen-P was extracted with 0.5 mol/L NaHCO₃, then determined using the molybdenum blue method (Olsen et al. 1954). The inorganic P of the soil sample was determined by a sequential fractionation method developed (Jiang and Gu 1989, Samadi and Gilkes

Table 1. Topsoil properties (0-20 cm) of the long-term fertilisation experiment in all treatment

Treatment		Organic C	Total N	Total K				
	рН	(g/kg)						
СКО	6.50 ± 0.02	9.22 ± 0.10	0.80 ± 0.01	20.10 ± 1.54				
CK	5.63 ± 0.05	9.39 ± 0.22	0.78 ± 0.02	20.06 ± 2.12				
NPK	5.36 ± 0.02	10.20 ± 0.37	0.84 ± 0.02	22.29 ± 1.30				
M1NPK	5.63 ± 0.03	12.98 ± 1.01	1.03 ± 0.02	23.38 ± 1.37				
M2NPK	6.01 ± 0.02	14.28 ± 0.48	1.16 ± 0.01	23.58 ± 0.47				

Means (± standard error) followed among different soil treatments under each column. 10 g of the composite soil sample for measuring pH in the soil-to-water ration of 1:2.5. The soil organic C and total N were determined using an elemental analyser (Elementar III, Bremen, Germany). CK0 – soil before planting in 1979; CK – unfertilised control in 2018; NPK – NPK mineral fertiliser; M1NPK – NPK mineral fertiliser plus low pig manure; M2NPK – NPK mineral fertiliser plus high pig manure

1999); the soil inorganic P fractions determined were 0.1 mol/L NH₄OH-soluble P: Ca bound P (Ca₂-P), 0.5 mol/L NH₄Ac-soluble P: Ca bound P (Ca₈-P), 0.5 mol/L NH₄F-soluble P: Al bound P (Al-P), 0.1 mol/L NaOH-Na₂CO₃-soluble P: Fe bound P (Fe-P), 0.3 mol/L sodium citrate + 1 g $Na_2S_2O_4$ + 0.5 mol/L NaOH: occluded-P (O-P), 0.25 mol/L H_2SO_4 -soluble P: Ca bound P (Ca₁₀-P), respectively. Bowman and Cole (1986) classification method for soil organic P, they were divided into four groups: labile organic P (LOP): 0.5 mol/L NaHCO₃, moderately labile organic P (MLOP): $1 \text{ mol/L H}_2\text{SO}_4 + 0.5 \text{ mol/L}$ NaOH, moderately resistant organic P (MROP): 0.5 mol/L NaOH no precipitation, highly resistant organic P (HROP): 0.5 mol/L NaOH precipitation. The P activation coefficient (PAC) is used to characterise soil P availability. The higher PAC, the higher the soil P availability, PAC = Olsen-P (mg/kg)/total P $(mg/kg) \times 100\%$.

Determination of P compounds by ³¹P NMR using the improved Cade-Menun and Preston (1996) program (McDowell et al. 2006), to obtain the detailed information of P composition, 5 g of air-dried composite soil samples (< 2 mm) were shaken for 16 h at 20 °C with a 1:20 solution of 100 mL 0.25 mol/L NaOH + 0.05 mol/L EDTA, followed by centrifugation for 30 min at approximately 10 000 \times g; the supernatant was freeze-dried at −80 °C. A 1 g sample of the freeze-dried material was dissolved in 0.4 mL 10 mol/L NaOH and 2.6 mL D₂O (deuterium oxide) solution, the reaction lasted for 30 min, with occasional oscillation, and then centrifuged at $1500 \times g$ for 20 min, the supernatant after centrifuging was analysed by NMR. All experiments were carried out in a dual resonance probe using a 10 mm NMR tube. Spectra were acquired on a 500 MHZ spectrometer (General Electric, Fremont, USA) equipped with a 10 mm broadband probe. The experimental parameters for NMR were as follows: pulse with 90° flip angle used, detection time of 0.68 s, pulse lag of 4.32 s, the temperature of 20 °C, each sample passed more than 8 000 scans, chemical shifts were determined relative to an external 85% orthophosphoric acid standard. The Peak areas were corrected for diester degradation by subtracting the areas of α - and β -glycerophosphate and mononucleotides from the phosphate monoester area and adding them to the phosphate diester area (Schneider et al. 2016). The relative proportion of all compounds in a spectrum was determined by ChemDraw and MestRec software. Determination of total P in the extract by ICP-OES. In the spectra of all the treatments, peaks were identified as orthophosphate (6 ppm); phosphonates (7.8, 8.67, 18.95); phosphate monoester (3–6 and 6–7.5 ppm); phosphate diester (-0.95, -0.73, 1.95, 3.58); pyrophosphate (-4.49) and polyphosphate (-4.23). Additionally, the peaks of phosphate monoester were identified as myo-inositol hexakisphosphate (myo-IHP) (4.01, 4.39, 4.55, 5.38), scyllo-inositol hexakisphosphate (scylo-IHP) (3.56), neo-inositol hexakisphosphate (neo-IHP) (4.28, 6.72), and D-chiro-inositol hexakisphosphate (D-chiro-IHP) (4.36, 6.45), α -glycerophosphate (5.11), β-glycerophosphate (4.8), glucose 6-phosphate (5.13), and choline phosphate (4.04). The content of P compounds in the pig manure (2018 year): 872.0 mg/kg orthophosphate; 5.5 g/kg pyrophosphate; 34.8 g/kg phosphate monoester; 2.7 g/kg phosphate diester.

Statistical analysis. The data was presented as the arithmetic mean values with standard errors. Oneway analysis of variance procedure was used to test the effects of the different treatments on TP (total P), Olsen-P, inorganic P, organic P, PAC (P activation coefficient) and P_{rec} (P recovered by NaOH-EDTA extraction), and the least significant difference (LSD) test was performed to establish whether the differences between the treatments were significant ($P \le 0.05$). The correlation between inorganic P and organic P with TP, Olsen-P, and PAC was examined by calculating the Pearson correlation coefficients. The statistical analyses were performed with SPSS software, version 21.0 (IBM Corp., Armonk, USA). There was using MestRec software (Galicia, Spain) to draw NMR spectra.

RESULTS AND DISCUSSION

Correlation between soil P and P components in different fertility soils. Forty years of N application decreased soil pH, but the addition of manure can slow down this phenomenon (Table 1). Long-term application of manure can significantly increase the contents of total P, Olsen-P, inorganic P, and organic P; besides, it was extremely increased the rates of P activation coefficient and P recovered by NaOH-EDTA extraction (Table 2). There was a significant positive correlation between total P and available P, inorganic P, and organic P (P < 0.01 or P < 0.05) (Table 3). In contrast to soil pH, an increase in the contents of organic P was followed by M2NPK, M1NPK, NPK, CK, and CK0 in turn. Presumably, because there were significant negative correlations

Table 2. Phosphorus (P) content, P activation coefficient, and P recovered by NaOH-EDTA extraction on different fertiliser treatments

Treatment	Total P	Olsen-P	Inorganic P	Organic P	PAC	P_{rec}
	(g/kg)		(mg/kg)	(%)		
СКО	0.42 ± 0.13^{d}	7.9 ± 2.59 ^e	231.4 ± 23.7°	164.18 ± 24.94 ^d	1.91 ± 0.21 ^e	39.6 ± 0.9 ^d
CK	$0.25 \pm 0.05^{\rm e}$	19.96 ± 1.92^{d}	$178.37 \pm 13.26^{\mathrm{d}}$	$191.56 \pm 17.95^{\circ}$	7.65 ± 1.35^{c}	20.6 ± 0.7^{e}
NPK	0.72 ± 0.27^{c}	28.2 ± 3.07^{c}	227.83 ± 13.77^{c}	233.55 ± 22.23^{b}	4.25 ± 1.22^{d}	48.7 ± 1.2^{c}
M1NPK	$1.08 \pm 0.31^{\rm b}$	107.59 ± 12.74^{a}	$576.48 \pm 29.98^{\mathrm{b}}$	342.45 ± 22.25^{a}	8.32 ± 11.46^{a}	60.3 ± 2.0^{b}
M2NPK	1.34 ± 0.38^{a}	125.47 ± 11.84^{b}	655.19 ± 40.22^{a}	346.88 ± 32.06 ^a	12.14 ± 2.26^{b}	87.5 ± 1.8^{a}

Means (\pm standard error) followed by different letters denote significant differences according to the Tukey test (P < 0.05; Duncan's test) among different soil treatments under each column. PAC – P activation coefficient; P_{rec} – P recovered by NaOH-EDTA extraction; CK0 – soil before planting in 1979; CK – unfertilised control in 2018; NPK – NPK mineral fertiliser; M1NPK – NPK mineral fertiliser plus low pig manure; M2NPK – NPK mineral fertiliser plus high pig manure

between pH and organic P extracted by a sequential fractionation scheme (Tiessen et al. 1984). There was a negative correlation between the PAC of CK0 and the P components (Table 3). The application of mineral

fertiliser or manure fertiliser combined can significantly increase the soil P content, but a large amount of inorganic P and organic P have more ineffective P, so it can not effectively activate the total P (Table 2).

Table 3. Results of analysis of Pearson's correlation (*P*-values) for inorganic phosphorus (P) and organic P with total P, available P, and P activation coefficient on different fertilisers

Treatment	Itoma	Inorganic P					Organic P				
Treatment	Item	Ca ₂ -P	Ca ₈ -P	Al-P	Fe-P	O-P	Ca ₁₀ -P	LOP	MLOP	MROP	HROP
	TP	0.90**	0.96**	0.76*	0.73*	0.69*	0.69*	0.85**	0.97**	0.68*	0.61*
CK0	AP	0.70*	0.82**	0.85**	0.84**	0.59*	0.62*	0.97**	0.88**	0.79*	0.64*
	PAC	-0.64*	-0.84**	-0.71*	-0.58*	-0.33	-0.30	-0.94**	-0.73*	-0.59*	-0.51*
	TP	0.97**	0.97**	0.96**	0.95**	0.86**	0.75*	0.91**	0.75*	0.87**	0.95**
CK	AP	0.95**	0.95**	0.90**	0.95**	0.87**	0.83**	0.96**	0.80**	0.90**	0.97**
	PAC	0.92**	0.92**	0.88**	0.94**	0.90**	0.88**	0.94**	0.82**	0.93**	0.97**
	TP	0.97**	0.94**	0.82**	0.95**	0.94**	0.90**	0.97**	0.97**	0.96**	0.97**
NPK	AP	0.91**	0.86**	0.80**	0.88**	0.87**	0.87**	0.95**	0.98**	0.84**	0.86**
	PAC	-0.77*	-0.90**	-0.70*	-0.89**	-0.82**	-0.70*	-0.80**	-0.76*	-0.94**	-0.92**
	TP	0.85**	0.97**	0.89**	0.79*	0.80**	0.57*	0.86**	0.89**	0.76*	0.87**
M1NPK	AP	0.83**	0.71*	0.89**	0.92**	0.94**	0.98**	0.85**	0.90**	0.97**	0.76*
	PAC	-0.71*	-0.89**	-0.69*	-0.63*	-0.56*	-0.29	-0.75*	-0.73*	-0.52*	-0.82**
M2NPK	TP	0.87**	0.89**	0.85**	0.85**	0.87**	0.92**	0.95**	0.93**	0.85**	0.95**
	AP	0.82**	0.97**	0.97**	0.98**	0.61*	0.89**	0.91**	0.70*	0.64*	0.86**
	PAC	-0.77**	-0.71*	-0.59*	-0.60*	-0.96**	-0.73*	-0.82**	-0.90**	-0.92**	-0.90**

r-value was shown. *P < 0.05; **P < 0.01. Indicating significance (P < 0.05; Person coefficient). The inorganic P of the soil sample was determined by a sequential fractionation method developed (Jiang and Gu 1989, Samadi and Gilkes 1999). Ca₂-P - NaHCO₃-soluble P; Ca₈-P - NH₄Ac-soluble P; Al-P - NH₄F-soluble P; Fe-P - NaOH-Na₂CO₃-soluble P; O-P - occluded-P; Ca₁₀-P - H₂SO₄-soluble P. The organic P of soil sample was determined by Bowman Cole (1986); LOP - labile organic P; MLOP - moderately labile organic P; MROP - moderately resistant organic P; HROP - highly resistant organic P; TP - total P; AP - Olsen-P; PAC - P activation coefficient; CKO - soil before planting in 1979; CK - unfertilised control in 2018; NPK - NPK mineral fertiliser; M1NPK - NPK mineral fertiliser plus low pig manure; M2NPK - NPK mineral fertiliser plus high pig manure

Table 4. Concentrations of phosphorus (P) compound classes (mg/kg) by solution ³¹P NMR (nuclear magnetic resonance) spectroscopy

Treatment	Orthophosphate	Pyrophosphate	Monoester	Diester	Phosphonates	M:D	c Monoester	c Diester	c M/D
CK0	77.0	5.0	65.9	2.6	0.0	25.8	48.5	20.0	2.4
CK	15.4	7.0	49.5	0.6	0.0	86.1	35.2	14.9	2.4
NPK	73.4	2.3	79.6	3.1	0.2	25.7	57.7	25.0	2.3
M1NPK	346.2	7.7	138.5	7.0	3.5	19.8	98.9	46.6	2.1
M2NPK	477.2	15.6	190.4	6.7	6.7	28.4	136.9	60.2	2.3

c Monoester, c Diester – phosphate monoester and diester, respectively, denote the correction for degradation products; M:D – monoester:diester ratio; c M:D – monoester:diester ratio, corrected for degradation products. CK0 – soil before planting in 1979; CK – unfertilised control in 2018; NPK – NPK mineral fertiliser; M1NPK – NPK mineral fertiliser plus low pig manure; M2NPK – NPK mineral fertiliser plus high pig manure

Distribution of mineral forms of P under differ**ent treatments.** Table 4 shows the spectrum of all treatments had the highest content is orthophosphate. According to the ³¹P NMR peak and its integral strength, the mineral forms of P at the chemical shift are orthophosphate, with an abundance of 15.4–477.2 mg/kg. The overall performance is that the concentration of phosphate diester is low in abundance, CK is the lowest, because 40 years no fertilisation, the original phosphate diester content is very low and easy to decompose into phosphate monoester, resulting in the inability to detect phosphate diesters clearly in CK. The monoester:diester (M:D) ratio is thought to be a measurement of P lability (Schneider et al. 2016), with no correction for diester degradation, the content of diester was low in all the treatments, but the ratios of M:D varied largely (Table 2). After the correction for diester degradation, there was no significant difference in corrected ratios of the M:D in all the treatments (Table 2), but the content of diester was increased, which was highest in M2NPK. Compared with CK0, fertilisation alone does not increase the concentration of orthophosphate, but the application of manure fertiliser increases the concentration. Interestingly, we found that the content of the orthophosphate of CK0 was still lower, but the content of phosphate diester was increased by applying mineral fertiliser. A strong relationship between pH and the composition of P forms (Chen et al. 2019), in this study, the application of N fertiliser reduced the soil pH; furthermore, some compounds, including DNA and phosphonates, accumulate preferentially in the soil with low pH (Condron et al. 2005). And the concentration of pyrophosphate could be increased by applying mineral fertiliser compared with other treatments except for CK. The maximum strength

content of pyrophosphate in M2NPK was 15.6 mg/kg, which was lowest in NPK (2.3 mg/kg). Moreover, the long-term application of manure fertiliser will increase the number of microorganisms and enzyme activity in the soil (Popelářová et al. 2008, Wang et al. 2013). The addition of manure increased the contents of orthophosphate and phosphate monoester, while the addition of mineral fertiliser and manure changed the soil pH; besides, the inositol phosphate in soil showed a pH-dependent variation in stabilisation in soil (Celi and Barberis 2007). This is important because phosphate monoesters are mainly composed of inositol compounds (Xin et al. 2019), and they may be available to plants in a long-time range, while orthophosphate is easily and immediately available (Yu et al. 2019); further tests are needed for confirmation. It is suggested that the application of manure fertiliser can improve the available P form of crops and increase the yield of crops.

Identification of forms of P in soil by 31 P NMR. ³¹P NMR spectra showed that orthophosphate and monoesters (mineral forms of P) were the main samples (Figure 2). Phytic acid is the most easily detected component of all processed phosphate monoesters. It may be that phytic acid originated from plants, especially seeds (Noack et al. 2014). The phytic acid in CK0, CK, and NPK mainly comes from the input of plants (seeds, weeds, roots, and residues). In addition to M1NPK and M2NPK, some of them come from manure fertiliser (Xin et al. 2019). However, Annaheim et al. (2015) showed that there was no significant difference in the concentration of phytic acid in the soil with long-term application of fertiliser. Different results may be due to different sources of manure fertiliser. It may also be an effective nutrient for plants in the long run (Richardson et al. 2007).

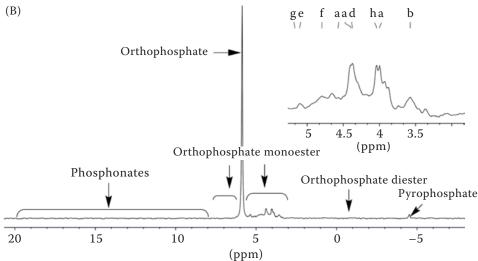
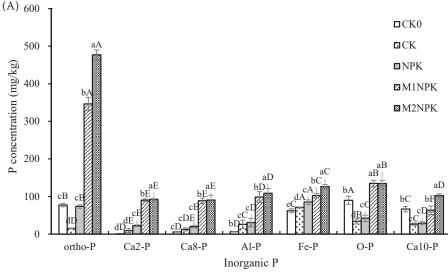



Figure 2. Solution ^{31}P nuclear magnetic resonance (NMR) spectra of NaOH-EDTA soil extracts collected from (A) manure fertiliser and (B) Haplic Luvisol. a – myo-inositol hexakisphosphate; b – scyllo-inositol hexakisphosphate; c – neo-inositol hexakisphosphate; d – D-chiro-inositol hexakisphosphate; e – α -glycerophosphate; f – β -glycerophosphate; g – glucose-6-phosphate; h – choline phosphate



A small amount of pyrophosphate was also found, is also an active and plant available compound. While phosphate diester, phosphonate, and polyphosphate (mineral forms of P) were rarely found in the soil.

The effects of different fertilisation soils on the components changes of inorganic P and organic P. Orthophosphate content increased when the inorganic P components were increased (Figure 1A). On the whole, the orthophosphate content followed the following order: CK < CK0 < NPK < M1NPK < M2NPK. The orthophosphate content in CK was the lowest, which was 15.4 mg/kg. M2NPK had the most significant effect and the highest content, and the orthophosphate content was 477.2 mg/kg. Orthophosphate content in CK0 (77.0 mg/kg) was similar to that in NPK (73.4 mg/kg). Orthophosphate has an high correlation with Ca₂-P, Al-P, and O-P (Table 5).

Fertilisation can extremely increase organic P components and phosphate monoester contents (Figure 1B).

Furthermore, except for CK0, the phosphate monoester content of other treatments increased significantly with the increase of organic P components, the phosphate monoester content followed the following order: CK < CK0 < NPK < M1NPK, M2NPK. No significant change in LOP content. The MLOP content of CK0 was lower than that of CK, but the phosphate monoester content is the opposite. It may be related to their pH because the contents of organic P increased through an accumulation of some P forms such as phosphate monoester (inositol hexakisphosphate) (Turner et al. 2013), and indicating that most of the organic P components in CK have a small contribution to the phosphoric acid monoester, although it can be expected that the longterm addition of organic fertiliser will increase the soil organic P pool (Song et al. 2011, Guardini et al. 2012), only MLOP and HROP have a high contribution (Figure 1B, Table 6). Phosphate monoester content in

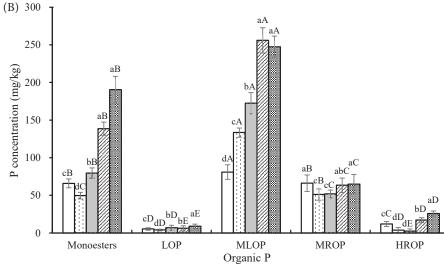


Figure 1. The response of (A) inorganic phosphorus (P) and (B) organic P. Values were means ± standard deviation (n = 3). Values with different uppercase letters within different treatments and different lowercase letters within different P forms indicated statistically significantly different at P < 0.05 level. Ca₂-P – NaHCO₃-soluble P; Ca₈-P -NH₄Ac-soluble P; Al-P -NH4F-soluble P; Fe-P -NaOH-Na2CO3-soluble P; O-P - occluded-P; Ca₁₀-P -H₂SO₄-soluble P. LOP – labile organic P; MLOP - moderately labile organic P; MROP moderately resistant organic P; HROP - highly resistant organic P. CK0 - soil before planting in 1979; CK - unfertilised control in 2018; NPK - NPK mineral fertiliser; M1NPK - NPK mineral fertiliser plus low pig manure; M2NPK - NPK mineral fertiliser plus high pig manure

M2NPK (190.39 mg/kg) increased extremely and was the soil is high correlated to the MLOP and HROP the highest. As a whole, the phosphate monoester in (Table 6).

Table 5. Correlations orthophosphate (ortho-P) with inorganic phosphorus (P) of different fertiliser treatments

Inorganic P	Significance Ortho-P	Marginal means for treatments (mg/kg)							
		CK0	CK	NPK	M1NPK	M2NPK			
Ca ₂ -P	*	0.90	9.06	22.17	89.89	92.62			
Ca ₈ -P	非非	5.81	12.31	19.57	88.28	90.56			
Al-P	*	6.43	25.93	30.45	98.31	108.82			
Fe-P	ns	62.03	70.59	84.98	102.09	126.28			
O-P	*	90.01	34.08	41.99	134.76	134.47			
Ca ₁₀ -P	ns	66.40	26.40	28.67	63.16	102.44			

*P < 0.05; **P < 0.01; ns – not significant. Indicating significance (P < 0.05; Person coefficient). The inorganic P of the soil sample was determined by a sequential fractionation method developed (Jiang and Gu 1989, Samadi and Gilkes 1999). Ca₂-P – NaHCO₃-soluble P; Ca₈-P – NH₄Ac-soluble P; Al-P – NH₄F-soluble P; Fe-P – NaOH-Na₂CO₃-soluble P; O-P – occluded-P; Ca₁₀-P – H₂SO₄-soluble P; CK0 – soil before planting in 1979; CK – unfertilised control in 2018; NPK – NPK mineral fertiliser; M1NPK – NPK mineral fertiliser plus low pig manure; M2NPK – NPK mineral fertiliser plus high pig manure

Table 6. Correlations phosphate monoester (monoesters) with organic phosphorus (P) of different fertiliser treatments

Organic P	Significance	Marginal means for treatments (mg/kg)							
	Monoesters	CK0	CK	NPK	M1NPK	M2NPK			
LOP	ns	5.32	3.84	6.95	6.07	8.86			
MLOP	非非	80.88	133.35	172.48	255.95	247.32			
MROP	ns	66.13	50.94	51.85	63.45	64.92			
HROP	*	11.85	3.42	2.27	16.98	25.78			

ns – not significant; *P < 0.05; **P < 0.01 indicating significance (P < 0.05; Person coefficient). The organic P of the soil sample was determined by Bowman Cole (1986). LOP – labile organic P; MLOP – moderately labile organic P; MROP – moderately resistant organic P; HROP – highly resistant organic P; CKO – soil before planting in 1979; CK – unfertilised control in 2018; NPK – NPK mineral fertiliser; M1NPK – NPK mineral fertiliser plus low pig manure; M2NPK – NPK mineral fertiliser plus high pig manure

Acknowledgment. We appreciate for editors and reviewers' warm work earnestly. We thank editing and executive editing comments and suggestions. And we thank reviewers for their thoughtful comments and valuable suggestions. We would like to thank Editage (www.editage.cn) for English language editing. X.L. and X.H. conceived and designed the study. S.Y., Q.X., J.F., N.L. collected and analysed the data. X.L. and X.H. wrote the paper. All authors read and approved the final manuscript.

REFERENCES

Ahlgren J., Djodjic F., Börjesson G., Mattsson L. (2013): Identification and quantification of organic phosphorus forms in soils from fertility experiments. Soil Use and Management, 29: 24–35.

Annaheim K.E., Doolette A.L., Smernik R.J., Mayer J., Oberson A., Frossard E., Bünemann E.K. (2015): Long-term addition of organic fertilisers has little effect on soil organic phosphorus as characterized by ³¹P NMR spectroscopy and enzyme additions. Geoderma, 257–258: 67–77.

Bowman R.A., Cole C.V. (1986): An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Science, 125: 95–101.

Cade-Menun B.J. (2017): Characterizing phosphorus forms in cropland soils with solution ³¹P-NMR: past studies and future research needs. Chemical and Biological Technologies in Agriculture, 4: 19.

Cade-Menun B.J., Preston C.M. (1996): A comparison of soil extraction procedures for ³¹P NMR spectroscopy. Soil Science, 161: 770–785.

Celi L., Barberis E. (2007): Abiotic reactions of inositol phosphates in soil. In: Turner B., Richardson A., Mullaney E. (eds.): Inositol Phosphates: Linking Agriculture and Environment. Wallingford, CABI Publishing, 207–220.

Chen S., Yan Z.J., Zhang S., Fan B.Q., Cade-Menun B.J., Chen Q. (2019): Nitrogen application favors soil organic phosphorus ac-

cumulation in calcareous vegetable fields. Biology and Fertility of Soils, 55: 481–496.

Condron L.M., Turner B.L., Cade-Menun B.J. (2005): Chemistry and dynamics of soil organic phosphorus. Talanta, 66: 359–371.

Deiss L., de Moraes A., Dieckow J., Franzluebbers A.J., Gatiboni L.C., Sassaki G.I., Carvalho P.C.F. (2016): Soil phosphorus compounds in integrated crop-livestock systems of subtropical Brazil. Geoderma, 274: 88–96.

FAO/UNESCO (1996): Soil Map of the World, Revised Legend. World Soil Resources Report 60. Rome, Food and Agriculture Organisation.

Gao C., Sun B., Zhang T.L. (2006): Sustainable nutrient management in Chinese agriculture: challenges and perspective. Pedosphere, 16: 253–263.

Guardini R., Comin J.J., Schmitt D.E., Tiecher T., Bender M.A., dos Santos D.R., Mezzari C.P., Oliveira B.S., Gatiboni L.C., Brunetto G. (2012): Accumulation of phosphorus fractions in typic Hapludalf soil after long-term application of pig slurry and deep pig litter in a notillage system. Nutrient Cycling in Agroecosystems, 93: 215–225.

Jiang B.F., Gu Y.C. (1989): A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Fertilizer Reseatch, 20: 159–165.

Li H.G., Liu J., Li G.H., Shen J.B., Bergström L., Zhang F.S. (2015): Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio, 44: S274–S285.

McDowell R.W., Stewart I., Cade-Menun B.J. (2006): An examination of spin-lattice relaxation times for analysis of soil and manure extracts by liquid state phosphorus-31 nuclear magnetic resonance spectroscopy. Journal of Environment Quality, 35: 293–302.

Noack S.R., McLaughlin M.J., Smernik R.J., McBeath T.M., Armstrong R.D. (2014): Phosphorus speciation in mature wheat and canola plants as affected by phosphorus supply. Plant and Soil, 378: 125–137.

Olsen S.R., Watanabe F.S., Cosper H.R., Larson W.E., Nelson L.B. (1954): Residual phosphorus availability in long-time rotations on calcareous soils. Soil Science, 78: 141–152.

- Richardson A.E., George T.S., Jakobsen I., Simpson R.J. (2007): Plant utilization of inositol phosphates. In: Turner B., Richardson A., Mullaney E. (eds.): Inositol Phosphates: Linking Agriculture and Environment. Wallingford, CABI Publishing, 242–260. ISBN 978 1 84593 152 1
- Richardson A.E., Lynch J.P., Ryan P.R., Delhaize E., Smith F.A., Smith S.E., Harvey P.R., Ryan M.H., Veneklaas E.J., Lanmbers H., Oberson A., Culvenor R.A., Simpson R.J. (2011): Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 349: 121–156.
- Samadi A., Gilkes R.J. (1999): Phosphorus transformations and their relationships with calcareous soil properties of Southern Western Australia. Soil Science Society of America Journal, 63: 809–815.
- Schneider K.D., Cade-Menun B.J., Lynch D.H., Voroney R.P. (2016): Soil phosphorus forms from organic and conventional forage fields. Soil Science Society of America Journal, 80: 328–340.
- Sommers L.E., Nelson D.W. (1972): Determination of total phosphorus in soils: a rapid perchloric acid digestion procedure. Soil Science Society of America Journal, 36: 902–904.
- Song C., Han X.Z., Wang E.L. (2011): Phosphorus budget and organic phosphorus fractions in response to long-term applications of chemical fertilisers and pig manure in a Mollisol. Soil Research, 49: 253–260.
- Stutter M.I., Shand C.A., George T.S., Blackwell M.S.A., Dixon L., Bol R., MacKay R.L., Richardson A.E., Condron L.M., Haygarth P.M. (2015): Land use and soil factors affecting accumulation

- of phosphorus species in temperate soils. Geoderma, 257–258: 29–39
- Tiessen H., Stewart J.W.B., Cole C.V. (1984): Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Science Society of America Journal, 48: 853–858.
- Turner B.L., Blackwell M.S.A. (2013): Isolating the influence of pH on the amounts and forms of soil organic phosphorus. European Journal of Soil Science, 64: 249–259.
- Wang F., Tong Y.A., Zhang J.S., Gao P.C., Coffie J.N. (2013): Effects of various organic materials on soil aggregate stability and soil microbiological properties on the Loess Plateau of China. Plant, Soil and Environment, 59: 162–168.
- Popelářová E., Voříšek K., Strnadová S. (2008): Relations between activities and counts of soil microorganisms. Plant, Soil and Environment, 54: 163–170.
- Xin X.L., Zhang X.F., Chu W.Y., Mao J.D., Yang W.L., Zhu A.N., Zhang J.B., Zhong X.Y. (2019): Characterization of fluvo-aquic soil phosphorus affected by long-term fertilisation using solution ³¹P NMR spectroscopy. Science of The Total Environment, 692: 89–97.
- Xu X.F., Miao Y.F., Zhang J.P., Guo Y.X., Jia X.N., Ding S.X., Li L. (2008): Cumulative trend of nitrogen and phosphorus in protected soil and their impact on soil physical and chemical characteristics. Chinese Journal of Eco-Agriculture, 16: 292–296.
- Yu G.Z., Yuan H., Luo Z., Liu Y.J., Liu X., Gao Y.X., Gong M., Zou Z.R. (2019): Establishment of a plant phosphorus utilization and weed control system based on phosphate and its dehydrogenase. Chinese Journal of Biotechnology, 35: 327–336. (In Chinese)

Received: May 24, 2020 Accepted: September 22, 2020 Published online: October 8, 2020