
Drought is a major environmental problem in crop 
yield and agricultural productivity worldwide (Kaya 
et al. 2019, Cohen et al. 2021) and can significantly 
affect the morphology, physiology and biochemical 
processes of plants (Ahmad et al. 2018, Kaya et al. 
2020, Kosar et al. 2021). With the number of drought 
episodes increasing with climate change across most 
regions worldwide (Williams and de Vries 2020), 
researching on alleviating drought-induced damage 
is critical to facilitate maintenance of the produc-
tivity of managed and natural ecosystems (Farooq 
et al. 2020).

Photosynthesis is the most basic life activity of 
plants and a central, primary response of plants to 
drought stress (Wang et al. 2020). Being the core 
element of photosynthesis, photosystem II (PSII) 
is more sensitive to stress than photosystem I (PSI) 
(Wang et al. 2017). The excess light energy pro-
duced by photosynthetic electron transport under 
stress can cause active oxygen burst and photooxi-
dative damage of the PSII core complex D1 protein 
(D’Alessandro and Havaux 2019). If it can not be 
repaired in time, sustained photoinhibition leads 
to reduced PSII photochemical activity (Huang et 
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al. 2018). In general, the photochemical activity of 
PSII was studied from the transport and utilisation 
of photosynthetic electrons included the aspect of 
absorption, capture, transmission and dissipation of 
light energy by rapid chlorophyll (Chl) fluorescence 
kinetics and Chl fluorescence quenching analysis 
(Živčák et al. 2008, Kalaji et al. 2014, Dąbrowski et 
al. 2019). 

Spermidine (Spd) is one of the three major poly-
amines (PAs), which are new type of low-molecular-
weight plant growth regulators. PAs are implicated 
in plant growth and developmental processes, as 
well as in defence responses to biotic and abiotic 
stresses (Patel et al. 2020). Recently, the application 
of exogenous Spd has attracted extensive attention. 
Exogenously applied Spd can alleviate growth inhibi-
tion and thylakoid membrane photodamage caused 
by salinity-alkalinity stress in tomato seedlings (Hu 
et al. 2014). Furthermore, under drought stress, exog-
enous Spd application protects maize seedlings from 
photoinhibition and photodamage (Li et al. 2018). 
Exogenously applied Spd also improves drought 
tolerance in creeping bentgrass (Li et al. 2015). It 
was reported that exogenous Spd application elicited 
higher Chl a content and PSII activity than spermine 
or putrescine application in Physcia semipinnata 
under the UV-A (352 nm) stress (Unal et al. 2008). 
Furthermore, Spd is the most efficient of the three 
main PAs in restoring maximum photochemical ef-
ficiency (Fv/Fm) of thylakoids under low salt stress 
(Ioannidis and Kotzabasis 2007).

Tall fescue (Festuca arundinacea Schreb.) is a cool-
season perennial species of forage and turf grass 
widely used in the temperate zones (Takamizo and 
Sato 2020). Owing to its well-developed root sys-
tem and wide adaptability to different climates and 
environments, tall fescue is widely used as a model 
species (Zhu et al. 2018). Although tall fescue is more 
adaptable than other cold-season lawns, drought is 
still the main abiotic stress limiting worldwide use 
(Chen et al. 2018).

In recent years, researches on the response of tall 
fescue to stress have mainly focused on high tem-
perature and salt stress (Wang et al. 2017). However, 
to the best of our knowledge, there is no report on 
the response of the photosynthetic characteristics 
of tall fescue with spermidine to drought stress. 
Therefore, the purpose of this study was to explore 
the protective function of Spd on the photosynthetic 
apparatus of tall fescue under drought stress and the 
regulation of its photosynthetic performance.

MATERIAL AND METHODS

Plant materials and growth conditions. Seeds 
of commercial tall fescue "Huntdog 5" were selected 
according to their uniformity and sown in plastic 
pots (13 cm in diameter and 11 cm in depth) filled 
with matrix (brown coal soil : sand = 1 : 1). The plants 
were stored for 50 days in a greenhouse (day/night 
temperature: 24/20 °C, and average relative humidity 
of 70%) with a photoperiod of 16 h (light intensity: 
300 µmol/m2/s) to allow root and shoot growth. The 
plants were then watered every day until drainage oc-
curred from the bottom, fertilised with half-strength 
Hoagland nutrient solution twice a week, and mowed 
at 7 cm above the matrix surface every week.

Reagent and drought-stress treatments. The 
plants were divided into four treatment groups: (1) 
drought stress, i.e., no irrigation until the matrix mois-
ture was lower than 30% at the optimum temperature 
(Huang and Gao 2000); (2) drought-stressed plants 
treated with 0.4 mmol/L Spd; (3) drought-stressed 
plants treated with 0.8 mmol/L Spd; (4) drought-
stressed plants treated with 1.2 mmol/L Spd. These 
concentrations of Spd (0, 0.4, 0.8 and 1.2 mmol/L) 
were selected according to previous experimental 
reports of tall fescue (Zhang et al. 2017). All treat-
ments were performed using completely randomised 
experimental plants, with three replicates per group.

Chl a fluorescence transient. Chl fluorescence is 
a non-invasive index for rapid evaluation of photo-
synthesis in vivo. Chl a fluorescence transient was 
measured by pulse amplitude modulation (PAM) fluo-
rometer (PAM 2500, Heinz Walz GmbH, Effeltrich, 
Germany). After 30 min of dark adaptation, fully 
expanded third leaves (from bottom) were triggered 
with a red light at 3 000 μmol/m2/s. The measure-
ments were made between 10 µs and 320 ms. Each 
measurement was replicated at least three times.

The JIP-test. Based on the energy flux theory in 
biomembranes, JIP testing was used to analyse the OJIP 
transient parameters developed by Strasser (Strasser 
1997, Chen et al. 2013). The energy flow begins with 
light absorption by PSII antenna pigments (ABS) and 
ends at the terminal electron acceptor (RE) on the 
PSI electron-acceptor side driven by PSI (Stirbet and 
Govindjee 2011). It represents the conversion of raw 
data into useful information regarding biophysical pa-
rameters, which quantify the energy flow through PSII 
(Shao et al. 2010). A typical JIP-test includes the pro-
cess of changes from point O to point P. Fluorescence 
parameters were calculated using three replicates.
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Statistical analysis. The data were analysed using 
SPSS one-way analysis of variance for Windows® 
v. 18 (SPSS Inc., Chicago, USA). Statistically significant 
differences (P < 0.05) between the different treat-
ments were calculated based on the Student’s t-test. 
The data are presented as the mean ± standard error 
(SE) of at least three replicates.

RESULTS

Effects of Spd on tall fescue OJIP transients 
against drought stress. To study the role of Spd 
in tall fescue, the responses of Chl a fluorescence 
transients to drought at different concentrations 
of Spd were evaluated (Figure 1). Significantly dif-
ferent changes were observed in Chl fluorescence 

transients at different concentrations of Spd under 
drought stress. 0.4 mmol/L of Spd exhibited the best 
performance against drought stress by improving 
F0 (fluorescence at time 20 µs after the onset of ac-
tinic illumination), FK (fluorescence value at 300 μs), 
FJ (fluorescence value at the J-step (2 ms) of OJIP), 
FI (fluorescence value at the I-step (30 ms) of OJIP) 
and FP (maximal recorded fluorescence intensity, 
at the peak P of OJIP). The results show that Spd 
application significantly increased the OJIP curve 
compared with non-Spd application under drought 
stress. This indicates that under drought stress, Spd 
plays a positive role in the photosynthetic perfor-
mance of tall fescue.

Effects of Spd on Chl a fluorescence basic param-
eters under drought stress. To investigate the effect 
of Spd on the photosynthetic system under drought 
stress, the parameters of OJIP transient curves were 
analysed using the JIP-test. The basic parameters 
of F0, FK, FJ, FI, and FP are plotted in Table 1. Data 
revealed that the three groups (F0, FK, and FI) did not 
show remarkable differences among the treatments. 
However, the application of Spd significantly increased 
the FJ and FP basic parameters under drought stress.

Effects of Spd on structural and functional pa-
rameters under drought stress. To further infer the 
structural and functional parameters of photosyn-
thesis intall fescue, photosynthetic parameters were 
analysed (Figures 2 and 7). There were no signifi-
cant differences in the values of Fv, Vk, Vj, Vi, M0, 
and Ss between the control and treatment regimes 
under drought stress. It is noteworthy that Sm and 
N values were reduced after the application of Spd 
under drought stress. Compared to those observed 
in the non-Spd application, the values of Sm and N 
decreased by up to 12.37% and 16.91%, respectively, 
upon Spd application. Sm that is the normalised 

Figure 1. The effect of chlorophyll fluorescence tran-
sients (OJIP (fluorescence rise kinetics O-J-I-P) curve) 
in tall fescue upon the exogenous application of sper�-
midine at different concentrations (0, 0.4, 0.8 and 
1.2 mmol/L) under drought stress

Table 1. Basic parameters of OJIP (fluorescence rise kinetics O-J-I-P) transient curves extracted by the JlP-test 
(the analysis of strong actinic light-induced O-J-I-P transients)

Treatment F0 FK FJ FI FP

0 mmol/L 0.69 ± 0.02a 1.73 ± 0.05a 1.76 ± 0.06b 2.54 ± 0.14a 2.74 ± 0.11b

0.4 mmol/L 0.74 ± 0.01a 1.83 ± 0.04a 1.93 ± 0.01a 2.77 ± 0.04a 3.02 ± 0.03a

0.8 mmol/L 0.70 ± 0.03a 1.67 ± 0.07a 1.78 ± 0.05b 2.61 ± 0.08a 2.80 ± 0.08ab

1.2 mmol/L 0.75 ± 0.02a 1.72 ± 0.05a 1.82 ± 0.03ab 2.65 ± 0.04a 2.86 ± 0.04ab

The values in the table are means ± standard error of three independent biological replicates, and the different letters 
represent the significance of statistical analysis (P < 0.05; Duncan’s test). F0 – fluorescence at time 20 µs after the onset 
of actinic illumination; FK – fluorescence value at 300 μs; FJ – fluorescence value at the J-step (2 ms) of OJIP; FI – 
fluorescence value at the I-step (30 ms) of OJIP; FP – maximal recorded fluorescence intensity, at the peak P of OJIP
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Figure 2. The effect of photosynthetic parameters analysed by the JlP-test (the analysis of strong actinic light-induced 
O-J-I-P transients) in tall fescue leaves upon the exogenous application of spermidine at different concentrations 
(0, 0.4, 0.8 and 1.2 mmol/L) under drought stress. Fv – aximal variable fluorescence; Vk – relative variable fluores-
cence at K step; Vj – relative variable fluorescence at J step; Vi – relative variable fluorescence at I step; M0 – ap-
proximated initial slope (in/ms) of the fluorescence transient; Sm – normalised total complementary area above the 
OJIP (fluorescence rise kinetics O-J-I-P) transient; Ss – normalised total complementary area corresponding only 
to the O-J phase; N – number of redox cycles of QA (primary quinone acceptor of PS II). The values are means ± 
standard error of three independent biological replicates. *P < 0.05 among the treatments by Student’s t-test

Figure 3. The effect of quantum yield and efficiency were analysed by the JlP-test (the analysis of strong actinic light-induced 
O-J-I-P transients) in tall fescue upon different concentrations of exogenous spermidine (0, 0.4, 0.8 and 1.2 mmol/L) under 
drought stress. φP0 – maximum quantum yield of primary photochemistry (at t = 0); Ψ0 – efficiency/probability that an 
electron moves further than QA (primary quinone acceptor of PS II); φE0 – quantum yield of electron transport (at t = 0); 
φD0 – quantum yield (at t = 0) of energy dissipation (at t = 0); φR0 – quantum yield for reduction of end electron acceptors at the 
PSI acceptor side; δR0 – efficiency/probability with which an electron from the intersystem electron carriers moves to reduce 
end electron acceptors at the PSI acceptor side (RE); γ/RC – probability that a PSII Chl molecule functions as RC; RC/ABS – 
QA-reducing RCs per PSII antenna Chl (reciprocal of ABS/RC). The values are means ± standard error of three inde- 
pendent biological replicates. *P < 0.05 among the treatments by Student’s t-test
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total complementary area above the OJIP transient 
represents the size of the plastoquinone pool or the 
ability of the electron transmitter to accept electrons 
after QA. N represents the number of redox cycles of 
QA. The reduction in both Sm and N values indicates 
that the subsequent electron transfer is restricted. 
These results suggested that Spd application under 
drought stress might lead to a photosynthetic elec-
tron transport traffic jam.

Effects of Spd on quantum yields and efficiencies 
parameters under drought stress. Some parameters of 
quantum yields and efficiencies were displayed (Figures 3 
and 7). There was no significant difference in these 
parameters except for the value of δR0 (efficiency of 
electron transfer from QB to PSI acceptors) after the 
application of Spd under drought stress. Moreover, 
a significant decrease of 20.05% was observed in the 
value of δR0 following the application of 0.8 mmol/L 
of Spd under drought stress in comparison to that 
observed with the non-Spd application.

Effects of Spd on specific energy fluxes pa-
rameters under drought stress. The values of the 
fluorescence parameters with respect to specific 
energy fluxes were shown (Figures 4 and 7). In 
terms of specific energy fluxes, the values of ABS/
RC and TR0/RC following application of 0.8 mmol/L 
of Spd decreased by 6.10% and 6.38% compared 
with that observed in no Spd application under 
drought stress. The application of Spd tended to 
reduce the values of ET0/RC, DI0/RC and RE0/RC 
under drought stress.

There were no significant differences in phe-
nomenological energy fluxes (Van Heerden et al. 
2004) parameters of RC/Cs0, ABS/Cs0, TR0/Cs0, 
ET0/Cs0, and DI0/Cs0 after the application of Spd 
under drought stress (Figures 5–7). Nevertheless, 
0.8 mmol/L of Spd had a positive influence on PIABS and 
PIcs, which were notably higher than those observed 
with the non-Spd application under drought stress 
(Figures 6 and 7).

Figure 4. The effect of specific energy fluxes was ana-
lysed by the JlP-test (the analysis of strong actinic light-
induced O-J-I-P transients) in tall fescue upon different 
concentrations of exogenous spermidine (0, 0.4, 0.8 and 
1.2 mmol/L) under drought stress. ABS/RC – absorption 
flux (of antenna Chls) per RC (at t = 0); TR0/RC – trapping 
flux (leading to QA reduction) per RC (at t = 0); ET0/RC – 
electron transport flux (further than QA−) per RC (at 
t = 0); DI0/RC – dissipated energy flux per RC (at t = 0); 
RE0/RC – electron flux reducing end electron acceptors 
at the PSI acceptor side, per RC. The values are means ± 
standard error of three independent biological replicates. 
*P < 0.05 among the treatments by Student’s t-test

Figure 5. The effect of phenomenological energy fluxe 
were analysed by the JlP-test (the analysis of strong ac-
tinic light-induced O-J-I-P transients) in tall fescue upon 
different concentrations of exogenous spermidine (0, 0.4, 
0.8 and 1.2 mmol/L) under drought stress. RC/Cs0 – den-
sity of RCs (QA-reducing PSII reaction centers) (at t = 0); 
ABS/Cs0 – absorption flux per CS, approximated by F0 (at 
t = 0); TR0/Cs0 – trapped energy flux per CS (at t = 0); 
ET0/Cs0 – electron transport flux per CS (at t = 0); 
DI0/Cs0 – dissipated energy flux per CS (at t = 0). The 
values are means ± standard error of three independent 
biological replicates, and *P < 0.05 among the treat-
ments by Student’s t-test
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DISCUSSIONS

Drought stress has emerged as a global concern, 
and effective strategies need to be formulated to 
prevent excessive losses in agricultural production 
(Begum et al. 2019). Drought stress causes various 
physiological interruptions and leads to senescence, 
which plays an important role in plant survival (Jan 
et al. 2019). In this study, we characterised the PSII 
photochemistry response to drought stress with dif-
ferent concentrations of Spd in tall fescue. We found 
that the exogenous application of Spd resulted in 
higher values of FJ and FP and lower values of Sm, N, 
δR0, ABS/RC and TR0/RC than a non-Spd application 
under drought stress. These results indicated that 
exogenous Spd promoted the photosynthetic system 
under drought stress in tall fescue.

Photosynthesis is the process by which living plants 
absorb, capture, transfer, and store energy from the 
sun (Hniličková et al. 2017). In this process, the light 
energy is absorbed by a dense array of Chl molecules 
to the reaction center and then converted into chemi-
cal energy (Zhang et al. 2019). Photosystem II is one 
of the most sensitive processes to stress (Huang et 
al. 2020), which causes a series of changes due to 
drought. Chl fluorescence transients mainly reflect 
the changes in the structure and mechanism of pho-
tosynthesis in the original photochemical reaction 
(Zhang et al. 2017). Previous studies reported that 
the Chl fluorescence transient curve represented 
the sequential reduction of PSII electron acceptors 
(Najafpour and Allakhverdiev 2015). The O-J phase 
represents the reduction of QA on the PSII receptor 
side, which is driven by the original photochemi-

Figure 6. The effect of performance indexes was analysed 
by the JlP-test (the analysis of strong actinic light-induced 
O-J-I-P transients) in tall fescue upon different concentra-
tions of exogenous spermidine (0, 0.4, 0.8 and 1.2 mmol/L) 
under drought stress. PIABS – performance index (po-
tential) for energy conservation from exciton to the 
reduction of intersystem electron acceptors; PItotal – 
performance index (potential) for energy conservation 
from exciton to the reduction of PSI end acceptors; 
PICS – performance index on cross-section basis. The 
values are means ± standard error of three independent 
biological replicates. *P < 0.05 among the treatments 
by Student’s t-test

cal reaction and involves a single flow of QA; the 
J-P phase involves multiple circulations of QA. In 
the current study, no significant change in the O-J 
phase emerged. This may be due to the minor effect 
of Spd on the PSII donor side under drought stress. 
A significantly strengthened J-P phase was observed 
with Spd application under drought stress compared 
to that with the non-Spd application. Therefore, it 
is inferred that the main influence site of Spd under 
drought stress was located on the PSII acceptor side.

To verify these speculations, several parameters 
were analysed using the JIP test. As shown in Table 1, 
exogenous Spd significantly improved the FJ and FP 
of tall fescue leaves under drought stress. Moreover, 
there was no obvious increase in F0, FK, and FI com-
pared to the non-Spd application under drought 
stress. These results indicated that exogenous Spd 
facilitated the photosynthetic system of tall fescue 
under drought stress. Similar results were also ob-
tained for citrus seedlings (Khoshbakht et al. 2018), 
maize (Li et al. 2018), and tomato seedlings (Hu et 
al. 2014).

Plants are constantly exposed to drought stress 
leading to oxidative damage because of reactive 
oxygen species (ROS) production and accumulation 
(Raja et al. 2020). ROS accumulation in plants can 
trigger the loss of integrity of organelles, oxidation of 
cell components, and even lead to cell death (Zhang 
et al. 2021). In the present study, exogenous Spd 
decreased Sm and N values under drought stress. 
Research has shown that the decreased values of Sm 
and N suggested that the reduction times of QA also 
decreased (Ni et al. 2012). The reduction of both in-
dicated that exogenous Spd inhibited photosynthetic 
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electron transport on the PSII acceptor side under 
drought stress. Studies have shown that a decrease in 
electron transfer can reduce ROS production (Asada 
2006). Thus, we proposed that the Spd application 
weakened photosynthetic electron transfer, thereby 
reducing the risk of ROS generation. Using the JIP 
test, we evaluated the values of intersystem electron 
carrier moves to reduce the end electron acceptors 
at the PSI acceptor side (δR0), absorption flux per 
RC (ABS/RC), and trapping flux per RC (TR0/RC). 
As shown in Figures 3 and 7, exogenous Spd notably 
decreased the values of δR0, which indicated that 

there was lower PSII activity in the photosystem. 
It has been reported that, compared with the heat-
sensitive genotype, the value of δR0 was relatively 
low in the heat-tolerant tall fescue genotype under 
heat stress (Chen et al. 2014), and after Asc (ascor-
bic acid) application, the value of δR0 obviously 
decreased under heat stress in tall fescue (Chen et 
al. 2017), which was consistent with the results of 
this study. In terms of specific energy fluxes, the 
values of ABS/RC and TR0/RC after Spd application 
were significantly lower than those of non-sprayed 
Spd under drought stress. These results indicated 

Figure 7. "Radar plots" of picked parameters characterising different behavior of photosystem II of tall fescue 
leaves upon different concentrations of exogenous spermidine (0, 0.4, 0.8 and 1.2 mmol/L) under drought stress. 
All values are shown as percent of control (control plants = 1). Fv – maximal variable fluorescence; Vk – relative 
variable fluorescence at K step; Vj – relative variable fluorescence at J step; Vi – relative variable fluorescence at I 
step; M0 – approximated initial slope (in/ms) of the fluorescence transient; Sm – normalised total complementary 
area above the OJIP (fluorescence rise kinetics O-J-I-P) transient; Ss – normalised total complementary area cor-
responding only to the O-J phase; N – number of redox cycles of QA; φP0 – maximum quantum yield of primary 
photochemistry (at t = 0); Ψ0 – efficiency/probability that an electron moves further than QA-; φE0 – quantum 
yield of electron transport (at t = 0); φD0 – quantum yield (at t = 0) of energy dissipation (at t = 0); φR0 – quantum 
yield for reduction of end electron acceptors at the PSI acceptor side; δR0 – efficiency/probability with which an 
electron from the intersystem electron carriers moves to reduce end electron acceptors at the PSI acceptor side (RE); 
γ/RC – probability that a PSII Chl molecule functions as RC; RC/ABS – QA-reducing RCs per PSII antenna 
Chl (reciprocal of ABS/RC); ABS/RC – absorption flux (of antenna Chls) per RC (at t = 0); TR0/RC – trapping 
flux (leading to QA reduction) per RC (at t = 0); ET0/RC – electron transport flux (further than QA−) per RC (at 
t = 0); DI0/RC – dissipated energy flux per RC (at t = 0); RE0/RC – electron flux reducing end electron acceptors 
at the PSI acceptor side, per RC; RC/Cs0 – density of RCs (QA-reducing PSII reaction centers) (at t = 0); ABS/
Cs0 – absorption flux per CS, approximated by F0 (at t = 0); TR0/Cs0 – trapped energy flux per CS (at t = 0); 
ET0/Cs0 – electron transport flux per CS (at t = 0); DI0/Cs0 – dissipated energy flux per CS (at t = 0); PIABS – 
performance index (potential) for energy conservation from exciton to the reduction of intersystem electron 
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that Spd application notably decreased electronic 
transmission efficiency and PSII function under 
drought stress. Therefore, the reduced activity of 
PSII may help limit the energy input into the light 
system and the production of ROS to resist drought 
stress in tall fescue. These data are in line with our 
findings that exogenous Spd remarkably decreases 
the values of Sm and N under drought stress. In the 
present study, we ascertained that 0.8 mmol/L of Spd 
had a positive effect on PIABS and PICS compared to 
the non-Spd application under drought stress. This 
result indicates that exogenous Spd can effectively 
alleviate a series of physiological changes caused by 
drought stress in tall fescue.

Although drought affects the photosynthesis of 
tall fescue, exogenous Spd can alleviate the effects 
of drought stress in this study. In summary, our 
study suggests that the exogenous application of Spd 
resulted in higher FJ and FP and the lower values of 
Sm, N, δR0, ABS/RC and TR0/RC than those observed 
with the non-Spd application under drought stress. 
However, the underlying mechanism of Spd action 
under drought stress in photosynthetic apparatus 
still needs further elucidation.
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