
The saturated hydraulic conductivity of soil (Ks) 
is one of the most important and most widely-used 
soil parameters and is commonly applied in a num-
ber of different geotechnical, environmental, and 
water investigations and models (Schaap et al. 2001, 
Mbonimpa et al. 2002, Araya and Ghezzehei 2019, 
Tuffour et al. 2019). Ks refers to the ease with which 
the pores of saturated soil/rock transmit water (United 
States Department of Agriculture 2022). Ks is re-
ported as one of the most important soil properties 
during the precipitation, snowmelt, flooding and 
irrigation events, as it determines the water flow 
behaviour, infiltration rate, runoff generation and 
deep drainage (Gamie and De Smedt 2018, Araya 
and Ghezzehei 2019). Various methods have been 
developed to determine Ks in the field and the labo-

ratory (Klute 1986). However, for larger areas or 
heterogeneous areas, an unreasonably high number 
of replicates need to be carried out in order to ac-
count for the spatial variability of Ks. Estimates of 
Ks by means of pedotransfer functions (PTFs) have 
been researched widely over the last 30 years. Large 
databases of basic soil properties (i.e. the European 
Soil Database (ESDB), the Soil Survey Geographic 
Database (SSURGO)), together with a range of ap-
proaches, including high-performance computing, 
have been used to obtain reasonable Ks estimates. 
Bouma (1989) introduced the term pedotransfer 
function, and Minasny et al. (1999) described PTFs 
as "translating data we have into what we need". The 
concept of PTFs was based on easily measured and 
easily-available soil properties, such as soil texture 
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and dry bulk density (BD), which were used as pre-
dictors to estimate desirable hydraulic properties 
(e.g. Ks). More recently, numerous PTFs have been 
proposed for a variety of purposes. Reviews discussing 
already published PTFs can be found in the works 
of Wösten et al. (2001), Pachepsky and Rawls (2004) 
and Vereecken et al. (2010). These works were mainly 
aimed at predicting soil water retention parameters. 
In the review of Zhang and Shaap (2019), a detailed 
description of the statistical techniques leading to the 
PTFs development for Ks predictions is presented.

Generally, the first types of PTFs were in the form 
of tabular values based on the soil texture class (e.g. 
Wösten et al. 1995) and linear/nonlinear regres-
sion equations (e.g. Wösten et al. 1995, Minasny et 
al. 1999). A more recent approach utilises Neural 
Network analysis (NN), which relates the basic soil 
properties (predictors) to the required output data 
(Ks) by an iterative calibration procedure. This ap-
proach has been implemented into the user-friendly 
Rosetta computer program, in which the models 
published by Shaap and Leij are utilised (Schaap et 
al. 1998, Schaap and Leij 2000). The current tech-
nical progress of high-performance computing and 
in hydraulic data collection of large databases has 
enabled the development of data-driven methods 
such as machine learning (ML). Araya and Ghezzehei 
(2019) presented ML-based PTFs for Ks prediction 

using various types of ML algorithms (K-Nearest 
Neighbours, Support Vector Regression, Random 
Forest and Boosted Regression Trees). The availability 
of large background soil databases implemented into 
the Rosetta program (Schaap et al. 2001) and ML-
based PTFs (Araya and Ghezzehei 2019) made them 
widely applicable. In this study, the hypothesis that 
PTFs are robust enough to predict Ks of soils of the 
Czech Republic with acceptable accuracy is tested.

MATERIAL AND METHODS

Background Ks data. A total of 126 Ks measure-
ments, together with information about soil texture, 
BD and organic carbon (Corg) content, were utilised 
for this study. The Ks data summarised within the 
HYPRESCZ database (Miháliková et al. 2013) were 
enriched by 46 recent own measurements. The data 
originates from agricultural soils in 13 localities in 
the Czech Republic (Figure 1). The basic information, 
together with the relevant soil characteristics, is pre-
sented in Table 1. The soil classification is presented 
in Figure 2. The USDA textural triangle consists of 
12 texture classes; however, the FAO textural triangle 
defines 5 texture classes only. In the Czech Republic, 
the 12 USDA classes are grouped into 5 "grouped 
texture classes," according to Němeček et al. (2001), 
which are similar to the FAO texture classes.

 
Figure 1. Location of the sites under investigation within the Czech Republic (background map: Czech Office 
for Surveying, Mapping and Cadastre)
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The Ks data were measured by different laboratory 
and field methods; the constant head apparatus, the 
falling head apparatus, pressure ring infiltrometer 
(Matula and Kozáková 1997) and Hood infiltrom-
eter (Umwelt Geräte Technik, GmbH, Müncheberg, 

Germany) were employed. The possible effect of 
the measurement method was not evaluated due 
to the non-existence of any reference method for 
Ks determination. The predictors were measured 
by standard procedures; particle size distribution 

Table 1. A description of the soils used for pedotransfer function (PTF) application; data for a total of 126 soils are 
grouped and described in terms of dry bulk density (BD), organic carbon (Corg) and saturated hydraulic conductivity (Ks)

USDA texture 
class

Grouped 
texture 

class

Records 
No. 

Averaged 
BD

BD 
range

Corg 
range

Averaged 
Corg

Averaged 
measured 

Ks (cm/day)(g/cm3) (%)
Sand 1 5 1.41 1.25–1.53 0.46–1.02 0.62 503.29
Loamy sand 1 6 1.34 1.07–1.70 0.27–1.32 0.81 178.18
Sandy loam 2 13 1.47 1.07–1.89 0.17–2.65 1.42   44.09
Loam 3 14 1.57 1.39–1.79 0.06–1.62 0.64   33.13
Silt loam 3 26 1.38 1.01–1.62 0.00–2.90 1.22 245.33
Silt 3 0 na na na na na
Sandy clay loam 4 15 1.45 1.22–1.73 0.06–3.31 2.34   87.02
Clay loam 4 16 1.55 1.26–1.75 0.06–1.69 0.61     7.42
Silty clay loam 4 23 1.39 1.13–1.74 0.08–1.83 1.02 214.04
Sandy clay 5 0 na na na na na
Silty clay 5 5 1.27 1.13–1.35 1.72–2.61 1.95 128.43
Clay 5 3 1.29 1.18–1.50 0.41–1.95 1.10   11.71

na – not applicable, as no data for this texture class was available

Figure 2. Particle size distri-
bution data of soils used in 
this study within the USDA 
soil texture triangle, with col-
oured indications of the five 
grouped texture classes (from 
1 to 5) according to Němeček 
et al. (2001)
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analysis by the Hydrometer Method, particle density 
by the Pycnometer Bottle Method, organic carbon 
Corg by the Walkley and Black oxidometric method, 
and bulk density on the basis of undisturbed soil core 
samples (100 cm3 and/or 250 cm3). 

Applied PTFs. The performance of eight models of 
PTFs with different predictors was evaluated within 
this study (Table 2). Aray and Ghezzehei (2019) de-
veloped ML-based PTFs on over 18 000 soils based 
on four types of ML-algorithms, two of which were 
selected for testing within this study: Random Forest 
(RF) and Boosted Regression Trees (BRT). The RF 
method combines (averages) the decisions of the 
large number of individual decision trees that are 
"grown" individually by searching for a predictor 
that ensures the best split that results in the small-
est model error. The RF method is reported to be 
relatively robust to errors and outliers (Gunarathna 
et al. 2019). BRT provides a form of a decision tree 
model ensemble with an enhancing procedure by 
a gradient boosting algorithm that creates additive 
regression models by sequentially fitting the decision 
trees (or any different type of "simply based learner") 
to the current pseudo-residuals at each iteration 
(Friedman 2002). Thanks to their operating princi-
ple, BRT methods are attractive in works where the 
training data originates from different measurement 
methods, as in the case of Ks measurements in the 
field/laboratory when different methods have been 
applied (Araya and Ghezzehei 2019). 

Rosetta (Schaap et al. 2001) is a public domain 
Windows-based modelling tool for water and solute 
transport within a variably saturated medium. In to-

tal, 1 306 soil samples with a measured Ks value are 
incorporated within the Rosetta database. It offers 
five hierarchical PTF models for Ks prediction; two 
of them were tested in this study (Table 2). Neural 
Network can be described as a highly interconnected 
network consisting of many simple processing units 
that are referred to as neurons (by analogy with the 
biological neurons in the human brain). Neurons that 
have similar characteristics are arranged in the NN 
in groups that are referred to as layers. The neurons 
in one layer are not mutually connected, but they are 
connected to the neurons in the adjacent layer. The 
connection strength of the neurons in the adjacent 
layers is represented by a parameter referred to as the 
connection strength or the weight. The NN normally 
consists of three layers: the input layer, the hidden 
layer and the output layer (Parasuraman et al. 2006, 
Arshad et al. 2013).

Statistical evaluation. Ks values expressed in 
cm/day are presented and evaluated, as it enables 
comparisons with other published studies. Prior to 
any statistical evaluation, all Ks values were log-
transformed in order to obtain their normal dis-
tribution. The performance of the tested PTFs was 
measured in terms of the root mean squared error 
(RMSE), the mean error (ME) and the coefficient of 
determination (R2), as follows:

(1)

(2)

(3)

Table 2. List of applied pedotransfer functions (PTFs) and their predictors

PTF model Predictor Reference

BRT 3-0 % sand, % silt, % clay

Araya and Ghezzehei (2019)

BRT 3-1 % sand, % silt, % clay, BD (g/cm3)
BRT 3-2 % sand, % silt, % clay, BD (g/cm3, Corg (%)

RF 3-0 % sand, % silt, % clay
RF 3-1 % sand, % silt, % clay, BD (g/cm3)
RF 3-2 % sand, % silt, % clay, BD (g/cm3), Corg (%)

Rosetta-SSC % sand, % silt, % clay Schaap et al. (2001)Rosetta-SSC, BD % sand, % silt, % clay, BD (g/cm3)

BRT – Boosted Regression Trees; RF – Random Forest; BD – dry bulk density; Corg – organic carbon
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where: xi – measured Ks data; yi – predicted Ks data; n – 
number of xi yi data pairs.

The RMSE indicates the average deviation of the 
predicted Ks values from the measured Ks. The 
smaller the RMSE value is, the better the perfor-
mance of the PTF prediction. The performance of 
each PTF model was evaluated according to its rank 
on a scale from 1 to 8; the best ranking value (1) 
was attributed to the applied PTF with the smallest 
RMSE value. The ME is negative if the prediction 
underestimates the Ks value and is positive if the PTF 
overestimates the measured Ks. The correspondence 
between the measured and predicted data is indi-
cated by the R2 value: the higher the R2, the better 
the correspondence.

RESULTS AND DISCUSSION

A total of 126 Ks values were predicted by eight 
models of PTFs. The soils investigated are rather het-
erogeneous and involve soils from two to six USDA soil 
texture classes. Evaluation and ranking of each applied 
PTF model were carried out in terms of the individual 
localities and also in terms of the five grouped texture 

classes (Němeček et al. 2001). The data distributions 
through their quartiles are graphically displayed in Box 
and Whisker plots (Figure 3). Generally, a quite high 
natural variability within and between the localities 
was observed, especially in the case of agricultural 
fields, where the tillage operations can temporarily 
affect the topsoil hydraulic properties. Relatively 
low variability in measured Ks and relatively good 
agreement between predicted and observed Ks were 
found for soils with a coarser texture (Figure 3, texture 
groups 1 and 2). Relatively high variability in measured 
Ks was found for soils with medium-to-fine textures 
(Figure 3, texture groups 3, 4 and 5), where Ks ranged 
approx. from 0.1 to 1 000 cm/day. For these groups, 
Rosetta SSC was not able to predict the wide range 
of measured Ks data (light green).

The quality of the predictions can be observed on 
the correlation graphs, where predicted and mea-
sured Ks data are plotted. The performance of the 
individual applied models of PTFs for each grouped 
textural class is displayed in Figure 4, while the com-
parison for the individual localities is displayed in 
Figure 5. Stronger correlations can be observed for 
models using NN analysis and the RF algorithm for 
coarse-textured soils (texture groups 1 and 2). The 

Figure 3. Comparison of the measured (in red colour) and predicted saturated hydraulic conductivity (Ks) 
values by means of Box and Whisker plots. BRT – Boosted Regression Trees; RF – Random Forest; BD – dry 
bulk density
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Figure 4. Correlations between the measured and predicted log-transformed Ks data for the soils in the Czech 
Republic with respect to their attribution to the grouped texture classes (1–5)
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R2 coefficients ranged from 0.002 (BRT models for 
texture class 5) to 0.260 (Rosetta models for texture 
class 1). Very good predictions were observed for 
the Žichlínek locality (R2 = 0.740). However, a high 
R2 coefficient does not always point to high-quality 
predictions. This is well illustrated in Figure 5, in the 
case of the Ledenice locality, where the R2 coefficient 
reached a relatively high value of 0.388, but Ks was 
significantly overestimated in practically all cases. 
For this reason, the final evaluation and ranking of 
the applied PTFs were made on the basis of RMSE 

(Table 3). The best ranking (1) is attributed to the 
PTF, with the smallest RMSE value summarised for 
all five grouped texture classes. The effect of over-
estimation or underestimation of the Ks values is 
shown in Figure 6, where the ME for each applied 
PTF and grouped texture class is plotted. Sparse 
underestimated Ks values originated randomly from 
all five grouped texture classes; no trends or texture 
dependency can be observed for the ME values. 

In conclusion, the best performance was by the 
Neural Network models in Rosetta, followed by the 

Figure 5. Correlations between the measured and predicted log-transformed saturated hydraulic conductivity 
(Ks) data for each of the localities in the Czech Republic. BRT – Boosted Regression Trees; RF – Random For-
est; BD – dry bulk density
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Random Forest models, while the ranking of the Boosted 
Regression Trees models was the poorest. The predic-
tion quality increased with an increasing number of 
predictors, which corresponds with the findings of 
Schaap et al. (2001). The Rosetta SSC-BD model, based 
on the known % content of clay, silt and sand particles, 
together with information on BD, outperformed all 

other models (Table 3). However, machine learning 
techniques have great potential and show promising 
results (Tóth et al. 2015, Araya and Ghezzehei 2019). 
The RMSE values for the models using RT reported 
by Lilly et al. (2008) were on an average 0.97; Tóth et 
al. (2015) reported an RMSE range from 0.90 to 1.36, 
while RMSE reported by Araya and Ghezzehei (2019) 

Table 3. Performance and the final ranking of the tested pedotransfer functions (PTFs) based on root mean 
squared error (RMSE)

Grouped texture 
class* BRT 3-0 BRT 3-1 BRT 3-2   RF 3-0 RF 3-1 RF 3-2 Rosetta 

(SSC)
Rosetta 

(SSC + BD)

RMSE values (log Ks in cm/day)
1 (11) 0.825 0.605 0.783 0.597 0.430 0.493 0.256 0.318
2 (13) 0.841 0.881 0.857 0.745 0.734 0.754 0.621 0.700
3 (40) 1.499 1.367 1.307 1.513 1.418 1.306 1.265 1.122
4 (54) 1.520 1.399 1.306 1.326 1.341 1.240 1.153 1.072
5 (8) 1.791 1.322 1.365 1.493 1.157 1.134 1.168 1.146

Ranking according to RMSE for each Grouped texture class 
1 (11) 8 6 7 5 3 4 1 2
2 (13) 6 8 7 4 3 5 1 2
3 (40) 7 5 4 8 6 3 2 1
4 (54) 8 7 4 5 6 3 2 1
5 (8) 8 5 6 7 3 1 4 2
Sum of rankings** 37 31 28 29 21 16 10 8

Ranking 1–5 (126) 8 7 5 6 4 3 2 1

*The values in brackets denote the number of soils within each grouped texture class. **The best ranking (1) is attributed 
to the PTF with the smallest value of the sum of the individual rankings within the grouped texture classes. BRT – 
Boosted Regression Trees; RF – Random Forest; BD – dry bulk density

Figure 6. Performance evaluation of the tested pedotransfer functions (PTFs) by means of mean error (ME) for 
the grouped textural classes (1–5); negative values of ME refer to an underestimation in comparison with the 
measured values (log Ks in cm/day). BRT – Boosted Regression Trees; RF – Random Forest; BD – dry bulk density
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reached 0.34–0.44 for the BRT models and 0.37–0.44 
for RF. In our study, comparable results with RMSE < 1 
were obtained by all eight applied models of PTFs only 
for the grouped soil texture classes 1 and 2 (sand, loamy 
sand and sandy loam). A possible reason for not scor-
ing higher might be the properties of the soils within 
the background soil database of PTFs published by 
Araya and Ghezzehei (2019), which contains mostly 
soils with a coarse texture; sand, loamy sand, sandy 
loam, sandy clay loam. In our upcoming work, we 
therefore plan to involve soil data from this study into 
the background database and repeat the performance 
testing of the PTFs. 
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