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Abstract: The study aims to indirectly determine the saturated hydraulic conductivity (Ks). The applicability of
recently-published pedotransfer functions (PTFs) based on a machine learning approach has been tested, and their
performance has been compared with well-known hierarchical PTFs (computer software Rosetta) for 126 soil data
sets in the Czech Republic. The quality of estimates has been statistically evaluated in comparison with the measu-
red Ks values; the root mean squared error (RMSE), the mean error (ME) and the coefficient of determination (R2)
were considered. The eight tested models of PTFs were ranked according to the RMSE values. The measured results
reflected high Ks variability between and within the study areas, especially for those areas where preferential flow
occurred. In most cases, the tested PTFs overestimated the measured Ks values, which is documented by positive
ME values. The RMSE values of the Ks estimate ranged on average from 0.5 (coarse-textured soils) to 1.3 (medium
to fine-textured soils) for log-transformed Ks in cm/day. Generally, the models based on Random Forest performed
better than those based on Boosted Regression Trees. However, the best estimates were obtained by Neural Network
analysis PTFs in Rosetta, which scored for four best rankings out of five.
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The saturated hydraulic conductivity of soil (Ks)
is one of the most important and most widely-used
soil parameters and is commonly applied in a num-
ber of different geotechnical, environmental, and
water investigations and models (Schaap et al. 2001,
Mbonimpa et al. 2002, Araya and Ghezzehei 2019,
Tuffour et al. 2019). Ks refers to the ease with which
the pores of saturated soil/rock transmit water (United
States Department of Agriculture 2022). Ks is re-
ported as one of the most important soil properties
during the precipitation, snowmelt, flooding and
irrigation events, as it determines the water flow
behaviour, infiltration rate, runoff generation and
deep drainage (Gamie and De Smedt 2018, Araya
and Ghezzehei 2019). Various methods have been
developed to determine Ks in the field and the labo-

ratory (Klute 1986). However, for larger areas or
heterogeneous areas, an unreasonably high number
of replicates need to be carried out in order to ac-
count for the spatial variability of Ks. Estimates of
Ks by means of pedotransfer functions (PTFs) have
been researched widely over the last 30 years. Large
databases of basic soil properties (i.e. the European
Soil Database (ESDB), the Soil Survey Geographic
Database (SSURGO)), together with a range of ap-
proaches, including high-performance computing,
have been used to obtain reasonable Ks estimates.
Bouma (1989) introduced the term pedotransfer
function, and Minasny et al. (1999) described PTFs
as "translating data we have into what we need". The
concept of PTFs was based on easily measured and
easily-available soil properties, such as soil texture
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and dry bulk density (BD), which were used as pre-
dictors to estimate desirable hydraulic properties
(e.g. Ks). More recently, numerous PTFs have been
proposed for a variety of purposes. Reviews discussing
already published PTFs can be found in the works
of Wosten et al. (2001), Pachepsky and Rawls (2004)
and Vereecken et al. (2010). These works were mainly
aimed at predicting soil water retention parameters.
In the review of Zhang and Shaap (2019), a detailed
description of the statistical techniques leading to the
PTFs development for Ks predictions is presented.

Generally, the first types of PTFs were in the form
of tabular values based on the soil texture class (e.g.
Wosten et al. 1995) and linear/nonlinear regres-
sion equations (e.g. Wosten et al. 1995, Minasny et
al. 1999). A more recent approach utilises Neural
Network analysis (NN), which relates the basic soil
properties (predictors) to the required output data
(Ks) by an iterative calibration procedure. This ap-
proach has been implemented into the user-friendly
Rosetta computer program, in which the models
published by Shaap and Leij are utilised (Schaap et
al. 1998, Schaap and Leij 2000). The current tech-
nical progress of high-performance computing and
in hydraulic data collection of large databases has
enabled the development of data-driven methods
such as machine learning (ML). Araya and Ghezzehei
(2019) presented ML-based PTFs for Ks prediction
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using various types of ML algorithms (K-Nearest
Neighbours, Support Vector Regression, Random
Forest and Boosted Regression Trees). The availability
of large background soil databases implemented into
the Rosetta program (Schaap et al. 2001) and ML-
based PTFs (Araya and Ghezzehei 2019) made them
widely applicable. In this study, the hypothesis that
PTFs are robust enough to predict Ks of soils of the
Czech Republic with acceptable accuracy is tested.

MATERIAL AND METHODS

Background Ks data. A total of 126 Ks measure-
ments, together with information about soil texture,
BD and organic carbon (Corg) content, were utilised
for this study. The Ks data summarised within the
HYPRESCZ database (Mihdlikova et al. 2013) were
enriched by 46 recent own measurements. The data
originates from agricultural soils in 13 localities in
the Czech Republic (Figure 1). The basic information,
together with the relevant soil characteristics, is pre-
sented in Table 1. The soil classification is presented
in Figure 2. The USDA textural triangle consists of
12 texture classes; however, the FAO textural triangle
defines 5 texture classes only. In the Czech Republic,
the 12 USDA classes are grouped into 5 "grouped
texture classes," according to Némecek et al. (2001),
which are similar to the FAO texture classes.
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Figure 1. Location of the sites under investigation within the Czech Republic (background map: Czech Office

for Surveying, Mapping and Cadastre)
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Table 1. A description of the soils used for pedotransfer function (PTF) application; data for a total of 126 soils are

grouped and described in terms of dry bulk density (BD), organic carbon (Corg) and saturated hydraulic conductivity (Ks)

Grouped Averaged BD C Averaged Averaged

HiiA texture textlllare Re;Ic(J)r‘ds BDg range r ag:gge Corj measufied
class (g/cm3) (%) Ks (cm/day)

Sand 1 1.41 1.25-1.53  0.46-1.02 0.62 503.29
Loamy sand 1 6 1.34 1.07-1.70 0.27-1.32 0.81 178.18
Sandy loam 2 13 1.47 1.07-1.89 0.17-2.65 1.42 44.09
Loam 3 14 1.57 1.39-1.79 0.06-1.62 0.64 33.13
Silt loam 3 26 1.38 1.01-1.62 0.00-2.90 1.22 245.33
Silt 3 0 na na na na na
Sandy clay loam 4 15 1.45 1.22-1.73  0.06-3.31 2.34 87.02
Clay loam 4 16 1.55 1.26-1.75  0.06-1.69 0.61 7.42
Silty clay loam 4 23 1.39 1.13-1.74  0.08-1.83 1.02 214.04
Sandy clay 5 0 na na na na na
Silty clay 5 1.27 1.13-1.35 1.72-2.61 1.95 128.43
Clay 5 3 1.29 1.18-1.50 0.41-1.95 1.10 11.71

na — not applicable, as no data for this texture class was available

The Ks data were measured by different laboratory
and field methods; the constant head apparatus, the
falling head apparatus, pressure ring infiltrometer
(Matula and Kozédkovéa 1997) and Hood infiltrom-
eter (Umwelt Geriéte Technik, GmbH, Miincheberg,
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Germany) were employed. The possible effect of
the measurement method was not evaluated due
to the non-existence of any reference method for
Ks determination. The predictors were measured
by standard procedures; particle size distribution

Figure 2. Particle size distri-
bution data of soils used in
this study within the USDA
soil texture triangle, with col-
oured indications of the five
grouped texture classes (from
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analysis by the Hydrometer Method, particle density
by the Pycnometer Bottle Method, organic carbon
Corg by the Walkley and Black oxidometric method,
and bulk density on the basis of undisturbed soil core
samples (100 cm? and/or 250 cm3).

Applied PTFs. The performance of eight models of
PTFs with different predictors was evaluated within
this study (Table 2). Aray and Ghezzehei (2019) de-
veloped ML-based PTFs on over 18 000 soils based
on four types of ML-algorithms, two of which were
selected for testing within this study: Random Forest
(RF) and Boosted Regression Trees (BRT). The RF
method combines (averages) the decisions of the
large number of individual decision trees that are
"grown" individually by searching for a predictor
that ensures the best split that results in the small-
est model error. The RF method is reported to be
relatively robust to errors and outliers (Gunarathna
et al. 2019). BRT provides a form of a decision tree
model ensemble with an enhancing procedure by
a gradient boosting algorithm that creates additive
regression models by sequentially fitting the decision
trees (or any different type of "simply based learner")
to the current pseudo-residuals at each iteration
(Friedman 2002). Thanks to their operating princi-
ple, BRT methods are attractive in works where the
training data originates from different measurement
methods, as in the case of Ks measurements in the
field/laboratory when different methods have been
applied (Araya and Ghezzehei 2019).

Rosetta (Schaap et al. 2001) is a public domain

tal, 1 306 soil samples with a measured Ks value are
incorporated within the Rosetta database. It offers
five hierarchical PTF models for Ks prediction; two
of them were tested in this study (Table 2). Neural
Network can be described as a highly interconnected
network consisting of many simple processing units
that are referred to as neurons (by analogy with the
biological neurons in the human brain). Neurons that
have similar characteristics are arranged in the NN
in groups that are referred to as layers. The neurons
in one layer are not mutually connected, but they are
connected to the neurons in the adjacent layer. The
connection strength of the neurons in the adjacent
layers is represented by a parameter referred to as the
connection strength or the weight. The NN normally
consists of three layers: the input layer, the hidden
layer and the output layer (Parasuraman et al. 2006,
Arshad et al. 2013).

Statistical evaluation. Ks values expressed in
cm/day are presented and evaluated, as it enables
comparisons with other published studies. Prior to
any statistical evaluation, all Ks values were log-
transformed in order to obtain their normal dis-
tribution. The performance of the tested PTFs was
measured in terms of the root mean squared error
(RMSE), the mean error (ME) and the coefficient of
determination (R2), as follows:

1 n
ME = — Z()’i - x;) (1)

Windows-based modelling tool for water and solute (2)
transport within a variably saturated medium. In to-
2
R2 — { N1 XY — Di=1Xi Di=1Vi } 3)
VI %% — QL x)? [n X, v:% — Qi v)?]
Table 2. List of applied pedotransfer functions (PTFs) and their predictors
PTF model Predictor Reference
BRT 3-0 % sand, % silt, % clay
BRT 3-1 % sand, % silt, % clay, BD (g/cm3)
BRT 3-2 % sand, % silt, % clay, BD (g/cm?, C__ (%)
B Araya and Ghezzehei (2019)

RF 3-0 % sand, % silt, % clay
RF 3-1 % sand, % silt, % clay, BD (g/cm?®)
RF 3-2 % sand, % silt, % clay, BD (g/cmB), Corg (%)

Rosetta-SSC
Rosetta-SSC, BD

% sand, % silt, % clay
% sand, % silt, % clay, BD (g/cm?®)

Schaap et al. (2001)

BRT - Boosted Regression Trees; RF — Random Forest; BD — dry bulk density; C

— organic carbon
org
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where: x, — measured Ks data; y, — predicted Ks data; n -
number of x, y, data pairs.

The RMSE indicates the average deviation of the
predicted Ks values from the measured Ks. The
smaller the RMSE value is, the better the perfor-
mance of the PTF prediction. The performance of
each PTF model was evaluated according to its rank
on a scale from 1 to 8; the best ranking value (1)
was attributed to the applied PTF with the smallest
RMSE value. The ME is negative if the prediction
underestimates the Ks value and is positive if the PTF
overestimates the measured Ks. The correspondence
between the measured and predicted data is indi-
cated by the R? value: the higher the R?, the better
the correspondence.

RESULTS AND DISCUSSION

A total of 126 Ks values were predicted by eight
models of PTFs. The soils investigated are rather het-
erogeneous and involve soils from two to six USDA soil
texture classes. Evaluation and ranking of each applied
PTF model were carried out in terms of the individual
localities and also in terms of the five grouped texture

https://doi.org/10.17221/123/2022-PSE

classes (Némecek et al. 2001). The data distributions
through their quartiles are graphically displayed in Box
and Whisker plots (Figure 3). Generally, a quite high
natural variability within and between the localities
was observed, especially in the case of agricultural
fields, where the tillage operations can temporarily
affect the topsoil hydraulic properties. Relatively
low variability in measured Ks and relatively good
agreement between predicted and observed Ks were
found for soils with a coarser texture (Figure 3, texture
groups 1 and 2). Relatively high variability in measured
Ks was found for soils with medium-to-fine textures
(Figure 3, texture groups 3, 4 and 5), where Ks ranged
approx. from 0.1 to 1 000 cm/day. For these groups,
Rosetta SSC was not able to predict the wide range
of measured Ks data (light green).

The quality of the predictions can be observed on
the correlation graphs, where predicted and mea-
sured Ks data are plotted. The performance of the
individual applied models of PTFs for each grouped
textural class is displayed in Figure 4, while the com-
parison for the individual localities is displayed in
Figure 5. Stronger correlations can be observed for
models using NN analysis and the RF algorithm for
coarse-textured soils (texture groups 1 and 2). The

4 1 — Sand, Loamy sand 4 2 — Sandy loam 4 3 — Silt, Silt loam, Loam
3 i 3 3 E
2 E‘—B * 2 i%%_ 2
1 1 1 %’
0 0 0 )
&
g -1 -1 -1
g
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" lay 1
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— 3 3
ERF 3-1 B RF 3-2
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Figure 3. Comparison of the measured (in red colour) and predicted saturated hydraulic conductivity (Ks)
values by means of Box and Whisker plots. BRT — Boosted Regression Trees; RF — Random Forest; BD — dry

bulk density
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Figure 4. Correlations between the measured and predicted log-transformed Ks data for the soils in the Czech
Republic with respect to their attribution to the grouped texture classes (1-5)
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Figure 5. Correlations between the measured and predicted log-transformed saturated hydraulic conductivity
(Ks) data for each of the localities in the Czech Republic. BRT — Boosted Regression Trees; RF — Random For-

est; BD — dry bulk density

R? coefficients ranged from 0.002 (BRT models for
texture class 5) to 0.260 (Rosetta models for texture
class 1). Very good predictions were observed for
the Zichlinek locality (R? = 0.740). However, a high
R? coefficient does not always point to high-quality
predictions. This is well illustrated in Figure 5, in the
case of the Ledenice locality, where the R? coefficient
reached a relatively high value of 0.388, but Ks was
significantly overestimated in practically all cases.
For this reason, the final evaluation and ranking of
the applied PTFs were made on the basis of RMSE
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(Table 3). The best ranking (1) is attributed to the
PTF, with the smallest RMSE value summarised for
all five grouped texture classes. The effect of over-
estimation or underestimation of the Ks values is
shown in Figure 6, where the ME for each applied
PTF and grouped texture class is plotted. Sparse
underestimated Ks values originated randomly from
all five grouped texture classes; no trends or texture
dependency can be observed for the ME values.

In conclusion, the best performance was by the
Neural Network models in Rosetta, followed by the
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Table 3. Performance and the final ranking of the tested pedotransfer functions (PTFs) based on root mean

squared error (RMSE)

CGIZ‘;:*PM texture  pRT3.0 BRT3-1 BRT3-2 RF3-0 RF3-1  RF3-2 R(‘gssectt)a (Sggsit;am
RMSE values (log Ks in cm/day)
1(11) 0.825 0.605 0.783 0.597 0.430 0.493 0.256 0.318
2 (13) 0.841 0.881 0.857 0.745 0.734 0.754 0.621 0.700
3 (40) 1.499 1.367 1.307 1.513 1.418 1.306 1.265 1.122
4 (54) 1.520 1.399 1.306 1.326 1.341 1.240 1.153 1.072
5(8) 1.791 1.322 1.365 1.493 1.157 1.134 1.168 1.146
Ranking according to RMSE for each Grouped texture class
1(11) 8 6 7 5 3 4 1 2
2 (13) 6 8 7 4 3 5 1 2
3 (40) 7 5 4 8 6 3 2 1
4 (54) 8 7 4 5 6 3 2 1
5(8) 8 5 6 7 3 1 4 2
Sum of rankings** 37 31 28 29 21 16 10 8
Ranking 1-5 (126) 8 7 5 6 4 3 2 1

*The values in brackets denote the number of soils within each grouped texture class. **The best ranking (1) is attributed

to the PTF with the smallest value of the sum of the individual rankings within the grouped texture classes. BRT —

Boosted Regression Trees; RF — Random Forest; BD — dry bulk density

Random Forest models, while the ranking of the Boosted
Regression Trees models was the poorest. The predic-
tion quality increased with an increasing number of
predictors, which corresponds with the findings of
Schaap et al. (2001). The Rosetta SSC-BD model, based
on the known % content of clay, silt and sand particles,
together with information on BD, outperformed all

other models (Table 3). However, machine learning
techniques have great potential and show promising
results (Téth et al. 2015, Araya and Ghezzehei 2019).
The RMSE values for the models using RT reported
by Lilly et al. (2008) were on an average 0.97; T6th et
al. (2015) reported an RMSE range from 0.90 to 1.36,
while RMSE reported by Araya and Ghezzehei (2019)

Rosetta (SSC+BD) _— 5
Rosetta (SSC) =l ma
m3
RF 3-2 g —
2
RF 3-1 p— .
RF 3-0 | —
BRT 3-2 ——
BRT 3-1 e —
BRT 3-0 | S

0.6-05-04-03-02-01 0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8

Mean error

Figure 6. Performance evaluation of the tested pedotransfer functions (PTFs) by means of mean error (ME) for

the grouped textural classes (1-5); negative values of ME refer to an underestimation in comparison with the
measured values (log Ks in cm/day). BRT — Boosted Regression Trees; RF — Random Forest; BD — dry bulk density
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reached 0.34-0.44 for the BRT models and 0.37-0.44
for RE. In our study, comparable results with RMSE < 1
were obtained by all eight applied models of PTFs only
for the grouped soil texture classes 1 and 2 (sand, loamy
sand and sandy loam). A possible reason for not scor-
ing higher might be the properties of the soils within
the background soil database of PTFs published by
Araya and Ghezzehei (2019), which contains mostly
soils with a coarse texture; sand, loamy sand, sandy
loam, sandy clay loam. In our upcoming work, we
therefore plan to involve soil data from this study into
the background database and repeat the performance
testing of the PTFs.
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