Change in β -glucosidase activity in root zone of ferns under toxic elements soil contamination

Milan Novák¹, Veronika Zemanová¹, Milan Pavlík^{1,2}, Simona Procházková¹, Daniela Pavlíková¹*

¹Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic ²Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic

Citation: Novák M., Zemanová V., Pavlík M., Procházková S., Pavlíková D. (2023): Change in β-glucosidase activity in root zone of ferns under toxic elements soil contamination. Plant Soil Environ., 69: 124–130.

Abstract: The influence of toxic elements, such as arsenic (As), cadmium (Cd), lead (Pb), and zinc (Zn), in the root zone of As-hyperaccumulator *Pteris cretica* cv. Albo-lineata and non-As-hyperaccumulator *P. straminea*, on the enzymatic activity of β-glucosidase, dissolved organic carbon (C) in soil, toxic element accumulation in fern roots, and root biomass were evaluated in a pot experiment. Ferns were cultivated in soils from the locality of Suchdol (control) and Litavka (high contamination) for six months. For all toxic elements, an increasing trend in their contents in the roots was observed with soil contamination for both ferns. Differences between ferns were observed in As and Zn accumulation. *Pteris cretica* had a significantly higher As accumulation than *P. straminea*. Zinc accumulation in the roots showed an opposite trend. A significant difference between ferns was confirmed in the dissolved organic C content. Our results showed a significantly higher content of dissolved organic C in the *P. straminea* root zone than in *P. cretica*. The significant effect of toxic elements in the soil on β-glucosidase activity was observed. Toxic elements inhibited β-glucosidase activity in the root zone of *P. cretica*, and an increase in *P. straminea* was determined in the Litavka soil. The results suggest a higher sensitivity of *P. straminea* to toxic element contamination in soil, leading to increased β-glucosidase activity and increased dissolved organic C content.

Keywords: pollution; heavy metal; soil enzyme activity; microorganism; Pteridaceae

Soil contamination with toxic elements affects soil microbiology and causes changes in the interactions between plants and microorganisms. It also significantly affects soil characteristics, plant growth, vegetation type, and agricultural land production (Wahsha et al. 2017, Zeng et al. 2019, Aponte et al. 2020a, Majumder et al. 2022). The accumulation of toxic elements by plants results in entry into the food chain, which then becomes hazardous to human health (Pande et al. 2022).

Soil enzymes produced extracellularly by microorganisms are key participants in soil nutrient cycles and

functional sustainability. They are sensitive to changes in the soil environment, such as contamination by toxic elements (Wahsha et al. 2017, Nkongolo and Narendrula-Kotha 2020, Cui et al. 2021, Majumder et al. 2022). Due to these characteristics, they can be used as biological indicators for evaluating soil health (Aponte et al. 2020b, Skowrońska et al. 2020).

The mineralisation of carbon (C) in the soil is crucial for soil quality, as it increases soil fertility. However, this is influenced by plant root exudation, microbial activities, and soil pH (Yu et al. 2021). The zone of plant roots also influences the activity and

Supported by the European Regional Development Fund-Project, Czech Republic, Project No. CZ.02.1.01/0.0/0.0/16_019/0000845.

^{*}Corresponding author: pavlikova@af.czu.cz

[©] The authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

composition of soil microbial communities through their exudates (Duan et al. 2022). The microbial utilisation of root exudates by soil microorganisms is reduced in soils contaminated with toxic elements, which is reflected in soil enzyme activity (Ciadamidaro et al. 2014). β -glucosidase is one of the most important soil enzymes involved in the C cycle. It plays a key role in the last phase of the cellulose degradation process by hydrolysis of cellobiose, resulting in glucose, an important source of energy for the growth and activity of soil microorganisms (Adetunji et al. 2017). In addition to other soil enzymes, the activity of β-glucosidase is influenced by soil properties, such as organic matter content and pH (Aponte et al. 2020b). Many studies have confirmed the sensitivity of β-glucosidase activity to toxic elements, so it can be a good indicator of the impact of toxic elements on soil health (Zimmer et al. 2012, Strachel et al. 2018, Haddad et al. 2019). In addition, understanding changes in β-glucosidase activity can help explain C metabolism and its cycle (Verma and Pandey 2022).

In this study, differences in root zones between the As-hyperaccumulator *Pteris cretica* cv. Albolineata and non-As-hyperaccumulator *P. straminea* were evaluated after six months of growth in noncontaminated soil and soil contaminated with toxic elements. This study aimed (1) to determine the effect of toxic elements on the activity of β -glucosidase and C content in the root zone and (2) to compare

the accumulation of toxic elements in the roots of hyperaccumulating and non-hyperaccumulating species. This study improves the understanding of the processes in the root zone of plants accumulating significant amounts of toxic elements.

MATERIAL AND METHODS

Design of the experiment and plant material.

A pot experiment was performed with 5 kg of Haplic Chernozem and Gleyic Fluvisol from two localities in the Czech Republic (Table 1). Each soil was replicated six times. Three pots of each soil contained Pteris cretica (L.) cv. Albo-lineata (As-hyperaccumulator), and another three pots contained P. straminea (Mett. ex Baker; non-As-hyperaccumulator). The used soils were fertilised with N, P and K (0.5 g N/kg soil in the form of NH_4NO_3 and 0.16 g P, and 0.4 g K/kg soil in K₂HPO₄). Each pot contained one plant. Plants were grown under greenhouse conditions (natural photoperiod; day/night temperature 22-24 °C/15-18 °C; relative humidity ~60%) (Zemanová et al. 2022). Plants and soil were collected after 180 days. The roots were rinsed with demineralised water, dried with filter paper, weighed, and dried in an oven to a constant weight (three days at 40 °C) and homogenised for element analysis. Samples of the root zone (defined as soil adhering to the roots after shaking) were collected during plant harvesting (soil was shaken off roots, homogenised and two subsamples were col-

Table 1. Basic characteristics and toxic element content of experimental soils

	Suchdol (50°8'8"N, 14°22'43"E)	Litavka (49°43'N, 14°0'E)	
Soil type	Haplic Chernozem	Gleyic Fluvisol	
Soil texture	silt loam	sandy loam	
Sand (%)	26.0	56.5	
Silt (%)	71.8	34.8	
Clay (%)	2.2	8.7	
Bulk density (g/cm ³)	1.57	1.33	
pH_{H_2O}	7.1 ± 0.1	5.4 ± 0.1	
CEC (mmol ₊ /kg)	230.1 ± 5.0	109.0 ± 31.9	
C _{org} (%)	1.8 ± 0.3	3.6 ± 0.4	
DOC (mg/kg)	153.0 ± 3.4	317.3 ± 19.3	
As _{total} (mg/kg)	18.1 ± 1.0	283.9 ± 7.7	
Cd _{total} (mg/kg)	0.4 ± 0.01	37.4 ± 1.1	
Pb _{total} (mg/kg)	32.1 ± 0.7	$2\ 361.2\pm32.4$	
Zn _{total} (mg/kg)	85.5 ± 2.5	$3\ 496.6 \pm 60.2$	

CEC – cation-exchange capacity; DOC – dissolved organic carbon

lected). Before analysis, the soil was sieved (< 2 mm), homogenised, lyophilised, and stored at -20 °C.

Plant analysis. The content of As, Cd, Pb, and Zn in the roots was determined using an Agilent 720 inductively coupled plasma optical emission spectrometer (ICP-OES; Agilent Technologies Inc., Torrance, USA) after low-pressure microwave digestion. Homogenised dry plant material $(0.5 \pm 0.05 \text{ g})$ was digested in 10 mL of a $4:1 (\nu/\nu)$ mixture of HNO $_3$ and H $_2$ O $_2$ in an Ethos 1 device (MLS GmbH, Leutkirch im Allgäu, Germany). After cooling, the digested sample was diluted to 50 mL with demineralised water. Certified reference material (CRM NIST 1573a Tomato leaves) was mineralised under the same conditions for quality assurance.

Soil analysis. β -glucosidase activity in the root zone was determined following Hřebečková et al. (2019) with several modifications. The lyophilised soil $(0.2 \pm 0.002 \text{ g})$ was mixed with 20 mL phosphate buffer (molar concentration 50 mmol/L, pH 7.0). The mixture was homogenised for 30 s at 8 000 rpm. Homogenised samples before measurement were stored for 24 h in a refrigerator. To determine the activity of β-glucosidase, solutions of 10 mL of dimethyl sulfoxide and 9.30 mg 4-methylumbelliferyl-β-Dglucopyranoside (molar concentration 2.75 mmol/L) were prepared. The homogenised suspension (200 μL), a substrate solution (40 µL), and additional dimethyl sulfoxide (20 µL) were pipetted into the relevant wells in the microplate. The microplate was placed in a Robbins Scientific® 2000 micro hybridisation incubator (SciGene, Sunnyvale, USA) at 40 °C for 5 min. Fluorescence was then measured using the Tecan Infinite® M200 (Tecan Austria GmbH, Salzburg, Austria). The microplate was again placed in the incubator for 120 min, and fluorescence was measured. Enzymatic activity was calculated from the difference between the initial and final values (μ mol/h/g).

The dissolved organic C was extracted with demineralised water (1:5, w/v; 30 min shaking; 12 h equilibration; centrifugation at 5 000 rpm) and determined by segmented flow analysis with infrared detection on a SKALAR^{plus}SYSTEM (Skalar Analytical B.V., Breda, the Netherlands).

The pH was measured in water extracts (1:5, w/v; 60 min shaking; 1 h equilibration) using a pH 8+ DHS meter (*XS* Instruments, Carpi, Italy).

Statistical analysis. Statistical processing of the results was performed using the programme Statistica 12.0 (StatSoft, Tulsa, USA) and the CANOCO 4.5 programme (ter Braak and Šmilauer 2002). To de-

termine significant differences among soils and plants, a one-way analysis of variance (ANOVA) was performed, followed by a posthoc comparison with Fisher's LSD (least significant difference) test (P < 0.05). A Pearson's linear correlation (r; P < 0.05) was performed to assess the relationships between root biomass and toxic elements in the soil. Data of technical replicates (three per analysis) were averaged for three independent biological repeats (pots). The data of roots and soil were presented as the average of three independent repeats with standard deviation. The data of β -glucosidase activity was presented as the average of two subsamples and three independent repeats (pots) with standard deviation.

RESULTS AND DISCUSSION

Pteris cretica had a significantly higher root biomass yield compared to P. straminea (Figures 1–2). There was an increasing trend in P. cretica, with a 65% increase in Litavka soil, in contrast to Suchdol soil. In contrast to these results, Zemanová et al. (2022) indicated no statistically significant differences in the root yield of P. cretica grown on As-contaminated soils compared with the control. Popov et al. (2021) confirmed no significant changes in the roots of this fern with an As dose of 100 mg/kg soil, while root yield on soil contaminated with a higher As dose (250 mg/kg soil) was significantly reduced. The correlations of root biomass yield with As (r = 0.95, P < 0.001), Cd (r = 0.94, P < 0.001), Pb (r = 0.95, P < 0.001), and Zn (r = 0.94, P < 0.001) were determined. In contrast

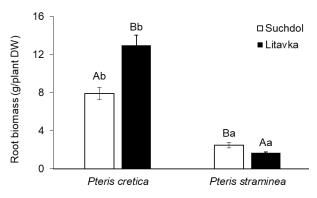


Figure 1. Root biomass yield of *Pteris cretica* and *P. straminea* in Suchdol (control) and Litavka (high contamination). The data represent the mean \pm standard deviation (n = 3). Different letters indicate significant differences (P < 0.05) among soils (uppercase letters) and plants (lowercase letters). DW – dry weight

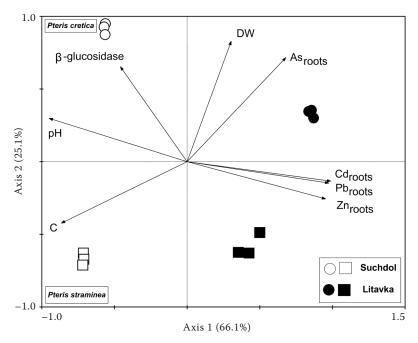


Figure 2. Ordination bi-plot of selected parameters in roots and the root zone of the As-hyperaccumulator *Pteris cretica* cv. Albo-lineata and non-As-hyperaccumulator *P. straminea* after a six-month growing cycle. The first axis of the PCA explains 66.1%, and both axes together explain 91.2% of the variability of all analysed data. The length and direction of the vectors indicate the strength of the vector effect and the correlation between the vectors, respectively. A long vector for a particular variable indicates that it greatly affects the results of the analysis, while the opposite is true for a short vector. An angle of $< 90^{\circ}$ between the vectors indicates that they are positively correlated. An angle of $> 90^{\circ}$ between two vectors indicates that they are not positively correlated. C – dissolved organic carbon; DW – yield of root biomass; pH – pH of soil water extracts

to *P. cretica*, a decreasing trend was observed for *P. straminea*, with a 32% decrease in Litavka compared to Suchdol (Figure 1). Correlations confirmed the impact of As (r = -0.87, P = 0.02), Cd (r = -0.88, P = 0.02), Pb (r = -0.88, P = 0.02), and Zn (r = -0.88, P = 0.02) on the formation of root biomass. Singh et al. (2009) described the difference in the effect of As soil contamination on root growth between *P. vittata* (As-hyperaccumulator) and *P. ensiformis*

(non-As-hyperaccumulator), and root biomass yield was negatively affected mainly in *P. ensiformis* plants.

For all toxic elements (As, Cd, Pb, and Zn), an increasing trend in their content in the roots was observed with a dose in the soil for both ferns (Table 2, Figure 2). Significant differences between ferns were determined in As root content. The content of this element was 7.4–9.5 times higher in the roots of *P. cretica*. The results confirmed *P. cretica* as

Table 2. Toxic element content (mg/kg dry weight) in roots of *Pteris cretica* and *P. straminea* in Suchdol (control) and Litavka (high contamination)

	P. cretica		P. straminea	
	Suchdol	Litavka	Suchdol	Litavka
As	42.0 ± 2.9 ^{Ab}	143.2 ± 19.1 ^{Bb}	4.4 ± 0.1 ^{Aa}	19.3 ± 8.7 ^{Ba}
Cd	0.3 ± 0.04^{Ab}	14.4 ± 1.0^{Ba}	0.2 ± 0.05^{Aa}	13.4 ± 2.1^{Ba}
Pb	3.4 ± 0.6^{Aa}	$480.5 \pm 87.0^{\mathrm{Bb}}$	3.8 ± 0.002^{Aa}	$225.1 \pm 47.7^{\text{Ba}}$
Zn	31.9 ± 3.3^{Aa}	$1\ 315.9 \pm 113.8^{\mathrm{Ba}}$	$44.7 \pm 0.7^{\mathrm{Ab}}$	$1570.3\pm218.9^{\mathrm{Bb}}$

The values represent the mean \pm standard deviation (n = 3). Different letters indicate significant differences (P < 0.05) among soils (uppercase letters) and plants (lowercase letters)

an As-hyperaccumulating fern (Meharg 2003, Eze and Harvey 2018). The results showed a higher Cd content in the root biomass of both ferns grown on Litavka soil, in contrast to Suchdol soil. A statistically significant difference between ferns was confirmed only for Suchdol soil. An increasing trend of Pb accumulation in the roots of P. cretica grown on Litavka soil compared to P. straminea was determined. Lead is passively absorbed into the root system, and structures within roots form barriers to Pb transport from roots to aboveground biomass (Tung and Temple 1996). Wan et al. (2014) tested the co-accumulation of As and Pb in P. vittata in a hydroponic experiment. The interaction between As and Pb in P. vittata was confirmed. According to these authors, Pb increased As absorption in the epidermis of *P. vittata* rhizoids, and more than 90% of Pb was restricted to the epidermis. Unlike congenital As accumulation, Pb accumulation in P. vittata may be an adaptive trait.

In both ferns, an increasing trend of Zn accumulation was confirmed; in P. cretica, the increase in Litavka compared to Suchdol was 41-fold. The same was the case with P. straminea, where there was a 35-fold increase. Pteris straminea accumulated significantly more Zn than P. cretica in both soils (Table 2, Figure 2). The results showed high Zn accumulation in the roots of both ferns and confirmed the findings of Cao et al. (2004). According to Roccotiello et al. (2010), the ferns Polypodium cambricum and P. vittata can uptake a high Zn quantity. The low translocation factor of both species indicated Zn sequestration in the root system. The content of Zn as a cofactor of the antioxidative enzyme superoxide dismutase is related to the reduction of oxidative stress induced by toxic elements (Cao et al. 2004). This explains the high Zn uptake by both ferns.

In the root zone of both ferns, the effect of toxic elements on soil quality was determined in relation to dissolved organic C and β -glucosidase activity. PCA analysis visualised in the PCA diagram (Figure 2) showed that the first ordination axis explained 65.8% of all analysed data variability and divided the Suchdol soil group on the left side from the Litavka soil group on the right side. This division indicated a large effect of soil and toxic element contamination on the studied parameters. For both soils, the location of fern species marks (circle and square) in the different parts of the diagram indicated a high effect of species on the recorded data. One-way ANOVA confirmed a significant difference between ferns in dissolved

organic C content, which decreased in Litavka soil in contrast to Suchdol (Figure 3). In P. cretica and P. straminea, the decreases were 22% and 39%, respectively. Zemanová et al. (2020, 2022) confirmed that soil contamination affected physiological and morphological changes in P. cretica roots, as well as changes in soil quality of the root zone, and the dissolved organic C content decreased with increasing As soil contamination. In contrast to our results, Zhan et al. (2018) observed a significant increase in dissolved organic C in the root zone of the phytostabiliser Athyrium wardii in soils contaminated with Cd and Pb. Our results showed a significantly higher content of dissolved organic C in the P. straminea root zone compared to P. cretica (by 45% Suchdol, 13% Litavka). This can indicate higher production of exudates in the root zone of P. straminea. As mentioned previously, plants produce higher amounts of exudates in response to contaminated soil. Li et al. (2013) reported that the hyperaccumulator Sedum alfredii produced more exudates as a significant source of dissolved organic C due to higher Zn stress. A similar study was conducted by Wei and Twardowska (2013), who used the Cd-hyperaccumulator Rorippa globosa and the non-hyperaccumulator R. palustris to examine the effect of Cd contamination on dissolved organic C in the root zone. According to these authors, the hyperaccumulator had a significantly higher concentration of dissolved organic C in the root zone compared to the non-hyperaccumulator. These findings are in opposition to our results. We speculate that the source of the increased amount

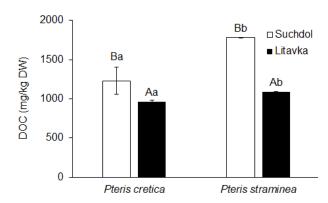


Figure 3. Dissolved organic carbon (DOC) in the root zone of *Pteris cretica* and *P. straminea* in Suchdol (control) and Litavka (high contamination) soil. The data represent the mean \pm standard deviation (n=3). Different letters indicate significant differences (P < 0.05) among soils (uppercase letters) and plants (lowercase letters). DW – dry weight

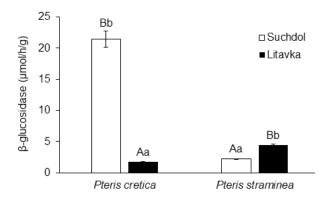


Figure 4. Activity of β -glucosidase in the root zone of *Pteris cretica* and *P. straminea* in Suchdol (control) and Litavka (high contamination) soil. Data represent the mean \pm standard deviation (n = 3). Different letters indicate significant differences (P < 0.05) among soils (uppercase letters) and plants (lowercase letters)

of soluble organic *C* in the root zone of *P. straminea* is the dead cells of root hairs.

Changes in dissolved organic C in the root zone can affect the enzymatic activity of soil microorganisms (Jia et al. 2015). Huang et al. (2020) examined soil organic C fractions and their relationship to soil microbial properties in the rhizosphere of Robinia pseudoacacia seedlings in Cd-contaminated soils. They confirmed that β -glucosidase was related to soil organic C fractions because β-glucosidase produced by microorganisms plays a key role in the mineralisation process. β-glucosidase is involved in the degradation of cellulose, the main component of plant cell walls, in soil (Turner et al. 2002). This enzyme activity was significantly depressed in the root zone of P. cretica grown on Litavka soil, in contrast to Suchdol soil (Figures 2 and 4). The opposite trend was observed in the root zone of *P. straminea*. According to Ghori et al. (2019), plants markedly increase root exudate production in response to a contaminated environment. This subsequently increased the activity of the microorganisms, which then released more β-glucosidase for glucose hydrolysis (Cui et al. 2021). Similarly, Duan et al. (2022), who studied the activity of soil enzymes in the root zone of Medicago sativa growing in soils contaminated with Cd, Pb, Zn, and Cu, observed a significant increasing trend. We speculated that this increased β-glucosidase activity is not the result of increased exudate production in the root zone in response to contaminated soil, but it resulted from the decomposition of polysaccharides forming the structure of the roots.

Acknowledgement. The authors are thankful to Ms. Hana Zámečníková from the Czech University of Life Sciences Prague for analyses of elements.

REFERENCES

Adetunji A.T., Lewu F.B., Mulidzi R., Ncube B. (2017): The biological activities of β -glucosidase, phosphatase and urease as soil quality indicators: a review. Journal of Soil Science and Plant Nutrition, 17: 794–807.

Aponte H., Medina J., Butler B., Meier S., Cornejo P., Kuzyakov Y. (2020a): Soil quality indices for metal(loid) contamination: an enzymatic perspective. Land Degradation and Development, 31: 2700–2719.

Aponte H., Meli P., Butler B., Paolini J., Matus F., Merino C., Cornejo P., Kuzyakov Y. (2020b): Meta-analysis of heavy metal effects on soil enzyme activities. Science of the Total Environment, 737: 139744.

Cao X., Ma L.Q., Cong Tu C. (2004): Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (*Pteris vittata* L.). Environmental Pollution, 128: 317–325.

Ciadamidaro L., Madejón P., Madejón E. (2014): Soil chemical and biochemical properties under *Populus alba* growing: three years study in trace element contaminated soils. Applied Soil Ecology, 73: 26–33.

Cui Y., Wang X., Wang X., Zhang X., Fang L. (2021): Evaluation methods of heavy metal pollution in soils based on enzyme activities: a review. Soil Ecology Letters, 3: 169–177.

Duan C., Wang Y., Wang Q., Ju W., Zhang Z., Cui Y., Beiyuan J., Fan Q., Wei S., Li S., Fang L. (2022): Microbial metabolic limitation of rhizosphere under heavy metal stress: evidence from soil ecoenzymatic stoichiometry. Environmental Pollution, 300: 118978.

Eze V.C., Harvey A.P. (2018): Extractive recovery and valorisation of arsenic from contaminated soil through phytoremediation using *Pteris cretica*. Chemosphere, 208: 484–492.

Haddad S.A., Lemanowicz J., El-Azeim A. (2019): Cellulose decomposition in clay and sandy soils contaminated with heavy metals. International Journal of Environmental Science and Technology, 16: 3275–3290.

Ghori N.H., Ghori T., Hayat M.Q., Imadi S.R., Gul A., Altay V., Ozturk M. (2019): Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 16: 1807–1828

Hřebečková T., Wiesnerová L., Hanč A. (2019): Changes of enzymatic activity during a large-scale vermicomposting process with continuous feeding. Journal of Cleaner Production, 239: 118127.

Huang S., Huang X., Fang B. (2020): Elevated ${\rm CO}_2$ affects the soil organic carbon fractions and their relation to soil microbial properties in the rhizosphere of *Robinia pseudoacacia* L. seedlings in Cd-contaminated soils. Journal of Soil Science and Plant Nutrition, 20: 1203–1214.

- Jia X., Zhao Y., Wang W., He Y. (2015): Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress. Scientific Reports, 5: 1–14.
- Li T., Tao Q., Han X., Yang X. (2013): Effects of elevated ${\rm CO_2}$ on rhizosphere characteristics of Cd/Zn hyperaccumulator *Sedum alfredii*. Science of the Total Environment, 454: 510–516.
- Majumder S., Powell M.A., Biswas P.K., Banik P. (2022): The impact of arsenic induced stress on soil enzyme activity in different rice agroecosystems. Environmental Technology and Innovation, 26: 102282.
- Meharg A.A. (2003): Variation in arsenic accumulation hyperaccumulation in ferns and their allies. New Phytologist, 157: 25–31.
- Nkongolo K.K., Narendrula-Kotha R. (2020): Advances in monitoring soil microbial community dynamic and function. Journal of Applied Genetics, 61: 249–263.
- Pande V., Pandey S.C., Sati D., Bhatt P., Samant M. (2022): Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Frontiers in Microbiology, 13: 824084–824084.
- Popov M., Zemanová V., Sácký J., Pavlík M., Leonhardt T., Matoušek T., Kaňa A., Pavlíková D., Kotrba P. (2021): Arsenic accumulation and speciation in two cultivars of *Pteris cretica* L. and characterization of arsenate reductase PcACR2 and arsenite transporter PcACR3 genes in the hyperaccumulating cv. Albo-lineata. Ecotoxicology and Environmental Safety, 216: 112196.
- Roccotiello E., Manfredi A., Drava G., Minganti V., Mariotti M.G., Berta G., Cornara L. (2010): Zinc tolerance and accumulation in the ferns *Polypodium cambricum* L. and *Pteris vittata* L. Ecotoxicology and Environmental Safety, 73: 1264–1271.
- Singh N., Ma L.Q., Vu J.C., Raj A. (2009): Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns. Environmental Pollution, 157: 2300–2305.
- Skowrońska M., Bielińska E.J., Szymański K., Futa B., Antonkiewicz J., Kołodziej B. (2020): An integrated assessment of the longterm impact of municipal sewage sludge on the chemical and biological properties of soil. Catena, 189: 104484.
- Strachel R., Wyszkowska J., Baćmaga M. (2018): An evaluation of the effectiveness of sorbents in the remediation of soil contaminated with zinc. Water, Air, and Soil Pollution, 229: 1–18.
- Ter Braak C.J.F., Šmilauer P. (2002): CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, Microcomputer Power.
- Tung G., Temple T.J. (1996): Uptake and localization of lead in corn (*Zea mays* L.) seedlings, a study by histochemical and electron microscopy. The Science of the Total Environment, 188: 71–85.

- Turner B.L., Hopkins D.W., Haygartha P.M., Ostle N. (2002): β-glucosidase activity in pasture soils. Applied Soil Ecology, 20: 157-162.
- Verma K., Pandey J. (2022): Collateral implications of carbon and metal pollution on carbon dioxide emission at land-water interface of the Ganga river. Environmental Science and Pollution Research, 29: 24203–24218.
- Wahsha M., Nadimi-Goki M., Fornasier F., Al-Jawasreh R., Hussein E.I., Bini C. (2017): Microbial enzymes as an early warning management tool for monitoring mining site soils. Catena, 148: 40–45.
- Wan X.M., Lei M., Chen T.B., Zhou G.D., Yang J., Zhou X.Y., Zhang X., Xu R.X. (2014): Phytoremediation potential of *Pteris vittata*L. under the combined contamination of As and Pb: beneficial interaction between As and Pb. Environmental Science and Pollution Research, 21: 325–336.
- Wei S., Twardowska I. (2013): Main rhizosphere characteristics of the Cd hyperaccumulator *Rorippa globosa* (Turcz.) Thell. Plant and Soil, 372: 669–681.
- Yu H., Zheng X., Weng W., Yan X., Chen P., Liu X., Peng T., Zhong Q., Xu K., Wang C., Shu L., Yang T., Xiao F., He Z., Yan Q. (2021): Synergistic effects of antimony and arsenic contaminations on bacterial, archaeal and fungal communities in the rhizosphere of *Miscanthus sinensis*: insights for nitrification and carbon mineralization. Journal of Hazardous Materials, 411: 125094.
- Zemanová V., Pavlíková D., Novák M., Dobrev P.I., Matoušek T., Motyka V., Pavlík M. (2022): Arsenic-induced response in roots of arsenic-hyperaccumulator fern and soil enzymatic activity changes. Plant, Soil and Environment, 68: 213–222.
- Zemanová V., Popov M., Pavlíková D., Kotrba P., Hnilička F., Česká J., Pavlík M. (2020): Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator *Pteris cretica* (L.) var. Albo-lineata. BMC Plant Biology, 20: 130.
- Zeng P., Guo Z., Xiao X., Peng C. (2019): Effects of tree-herb coplanting on the bacterial community composition and the relationship between specific microorganisms and enzymatic activities in metal(loid)-contaminated soil. Chemosphere, 220: 237–248.
- Zhan J., Li T., Zhang X., Yu H., Zhao L. (2018): Rhizosphere characteristics of phytostabilizer *Athyrium wardii* (Hook.) involved in Cd and Pb accumulation. Ecotoxicology and Environmental Safety, 148: 892–900.
- Zimmer D., Baum C., Meissner R., Leinweber P. (2012): Soil-ecological evaluation of willows in a floodplain. Journal of Plant Nutrition and Soil Science, 175: 245–252.

Received: December 23, 2022 Accepted: February 27, 2023 Published online: March 27, 2023