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Abstract: Quantification of soil health dynamics relative to grazing can inform both agriculture and conser-
vation. We conducted an experiment near Lingle, Wyoming, USA, on a semi-arid northern mixed-grass prairie
from 2017-2019. Three grazing density treatments (NG — not grazed; MRG — moderate rotationally grazed a herd
of 4 Angus heifers, and UHD — ultra-high density rotationally grazed a herd of 33 Angus cow-calf pairs) were
replicated four times in a randomised complete block design across twelve — 0.405 ha paddocks. Soil sampling
was conducted prior to grazing in June 2017, one-week post grazing in July 2019, and six weeks post grazing in
August 2019 and included a suite of forage, ground cover, soil chemical, soil physical, and soil microbiological
measurements. Grazing treatment did result in lower vegetation structure but had no effect on any soil vari-
ables (P > 0.05). Conversely, the sampling interval was more influential for predicting fluctuations in chemical
(15 variables significantly different within at least one treatment) or microbiological (13 variables significantly
different within at least one treatment) variables than grazing treatment. The study was conducted in an intact
native prairie with initial and final values indicating "Very Good" soil health, including the saturated:unsaturated
fatty acid ratio, an indicator of stress.
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Livestock grazing is one of the most common ag-
ricultural practices globally. Rangelands provide the
land base for a large proportion of these livestock
enterprises, and most rangelands are only agricul-
turally suited to livestock grazing due to limited
primary productivity, soil depth, and other climate
and topographical constraints (Derner et al. 2017).
With the consistent increase in human population,
there has been an intensification of land use in or-
der to optimise the provision of ecosystem goods
and services, including livestock production and

rangeland enhancement (Derner et al. 2018). Such
grazing intensification has revealed a wide range of
soil, vegetation, and livestock responses (Briske et
al. 2008, Teague et al. 2013). Relevant to this varia-
tion in responses is the influence of environmental
context, particularly climate and soils (Derner et al.
1997, Derner and Shuman 2007).

Central to understanding how rangelands respond
to grazing intensification is the need to understand
soil health responses (Dormaar et al. 1989). Soil health
refers to the synergistic relationship between the

U.S. Department of Agriculture (USDA) — Natural Resource Conservation Service (NRCS) through the cooperative
agreement titled "Practical Aspects of Soil Health for Ranchers", Project No. 68-7482-16-546.

© The authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

344



Plant, Soil and Environment, 69, 2023 (7): 344-362

Original Paper

https://doi.org/10.17221/54/2023-PSE

chemical, physical, and biological properties of soil
driven by living soil organisms that influence plant
health via soil nutrient cycling (Lal 2016) that ulti-
mately provide ecosystem services that sustain plants,
animals, and humans (Williams et al. 2020). When
soil health is improved through mechanisms such as
water retention and nutrient cycling, it is possible
that greater forage production and animal health and
production may also be realised (Manley et al. 1995).
The processes by which grazing animals may affect
soils include physical trampling, depositing faeces
and urine resulting in nutrient redistribution, and
defoliation of plants leading to alterations of ground
cover (Van Syoc et al. 2022). These processes can then
alter physical features of the soil, such as pore space,
microbial niches, labile nitrogen pools, soil organic
matter, vegetation composition, and ultimately cas-
cading soil-microbe-plant interactions (Hamilton et
al. 2008, Mikola et al. 2009, Damsma et al. 2015). For
example, short-duration grazing/trampling resulted in
lower soil bulk density and greater aboveground forage
biomass when compared to continuous grazing systems
(Abdel-Magid et al. 1987). Similarly, organic matter
percentage, water infiltration, fertility, and penetration
resistance were negatively influenced at higher rates
of trampling, while the effects on vegetation were
species-dependent (Ferrero 1991). Direct chemical
inputs via faecal matter and urine with increasing
grazing densities enhanced nitrogen cycling, as well
as phosphorous and potassium levels (Kohandel et
al. 2009). Moreover, microbial diversity and biomass
may also be affected, as shown by Song et al. (2008).

However, the effects of grazing on soil health can-
not be oversimplified as the application of different
grazing management has the potential to influence
soil health variably. This variability is attributed
to the relative intensity and duration of associated
foraging and trampling activity on rangelands, which
dictates the degree of interaction with soil health
features through both direct and indirect mecha-
nisms (Eldridge et al. 2017). From an applied grazing
management perspective, higher stocking density and
rotation allow for optimisation of cattle movements
relative to timing and frequency of grazing, potentially
limiting selectivity and preventing repeated grazing of
preferred plants (Bailey and Brown 2011). Briske and
Richards (1995) noted that chronic, intensive grazing
(continuous grazing) minimizes the leaf area of for-
age, leading to a reduction of total photosynthesis.
Lower amounts of photosynthetic tissues result in
lower root-to-shoot biomass leading to the degrada-

tion of rangelands. Zhang et al. (2017) demonstrated
that the sensitivity of forage response to grazing is
greater than that of soils. Relative to soil implica-
tions, a recent study from Australia suggested that
as grazing intensity increases, strong reductions in
the stability and nutrient indices of soil health were
expressed, especially in low productivity environ-
ments (Eldridge et al. 2017).

This potential negative effect of grazing manage-
ment intensification on soil health in low-productivity
environments, coupled with some studies suggesting
that more intensive grazing benefits soil health, de-
mands more empirical assessments of the top-down
effects of grazing management on soil health. In an
effort to understand the effects of grazing on the
soil health of cold, high-elevation, low-productivity
rangelands, we conducted an empirical grazing ex-
periment to (1) determine how grazing density, or
complete exclusion, alters soil health properties and
(2) quantify both the direction and magnitude of any
soil health alterations relative to grazing management.

MATERIAL AND METHODS

Study site. The study site was located at the
University of Wyoming’s James C. Hageman
Sustainable Agricultural Research and Extension
Center (SAREC) facility in Lingle, Wyoming, USA,
in a northern mixed-grass prairie (NRCS 2001). Prior
to the experiment, the pasture was used for summer
season cattle grazing at a moderate utilisation level.
The research plots were located in Loamy Ecological
Site RO67AY122WY within the Major Land Resource
Area (MLRA) 67A Central High Plains North. Long-
term (1895-2022) annual mean precipitation and
temperature is 364 mm and 8.6 °C. Soils are of the
Mitchell Series and consist of very deep, well-drained
soils formed in loamy colluvial and alluvial sedi-
ments weathered from siltstone, and the mean eleva-
tion of our plots is ~1 355 m a.s.l. Soil texture with
a hydrometer of the study plots indicated that the
percent sand, silt, and clay were 46.8% + 1.1, 34.1% +
1.3, and 19.1% * 0.4, respectively. The main for-
age species were native plants, including western
wheatgrass (Pascopyrum smithii) (Rydb.) A. Love),
needle-and-thread (Hesperostipa comata) (Trin.
& Rupr.) Barkworth), and blue grama (Bouteloua
gracilis) (Wild. Ex Kunth) Lag. Ex Griffiths). Annual
forage production is estimated at 1 121 kg/ha in an
unfavourable year, 1 682 kg/ha in an average year,
and 2 242 kg/ha in above-average years (NRCS 2001).
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Table 1. Grazingtreatment abbreviations, definitions, and details for grazing density and soil health experiment

located at the University of Wyoming’s James C. Hageman Sustainable Agricultural Research and Extension Center
(SAREC) facility in Lingle, Wyoming, USA in a northern mixed grass prairie. The study duration was 2017-2019,

and cattle were crossbred Angus (Bos taurus)

Abbreviation  Definition Details of treatment target and realised animal pressure
NG not grazed Completely excluded from any livestock grazing for the duration of the study.
Based on the United States Department of Agriculture — Natural Resources
Conservation Service (USDA-NRCS) recommendations of moderate stocking rate
moderate aiming for removal of 50% of herbaceous forage biomass with as light of animal
MRG rotationally  density as possible (NRCS 2009). Grazed with 4 Angus heifers per 0.405 ha paddock,
grazed which is an approximate equivalent to 5 380 kg/ha. This number of animals was
the minimum number determined for the social contentedness of the animals
in an isolated paddock.
ultra-high Based on USDA-NRCS recommendations of realising approximately 56 043 to
UHD density 84 064 animal kg/ha for removal of 50% of herbaceous forage biomass
rotationally (NRCS 2011). Grazed with 33 Angus cow-calf pairs (66 animals)
grazed per 0.405 ha paddock which is an approximate equivalent of 67 812 animal kg/ha.

Experimental design and treatments. We used
a randomised complete block design (RCBD) with
3 grazing treatments (NG — not grazed; MRG — mod-
erate rotationally grazed herd with 4 Angus heifers in
4 separate herds; UHD — ultra-high density rotational-
ly grazed herd with 33 Angus cow-calf pairs in a single

herd; Tables 1 and 2) replicated 4 times (i.e., blocks)
for a sample size (1) = 12 total paddocks (Figure 1A;
NRCS 2011). In UHD, 2 bulls were with cows during
the experimental grazing period in 2017 but no bulls in
2018 or 2019. Heifers were estimated to weigh 544 kg,
mature cows were estimated to weigh 635 kg,

Table 2. Grazing treatments at the University of Wyoming’s James C. Hageman Sustainable Agricultural Research
and Extension Center (SAREC) facility in Lingle, Wyoming, USA in a northern mixed grass prairie. The study

duration was 2017-2019, and cattle were crossbred Angus (Bos taurus)

Year Moderate rotationally grazed (MRG) Ultra-high density (UHD)
4 heifers per paddock 33 cow-calf pairs + 2 bulls
Block 1: 4.5 days; June 28 — July 2"d start: 7 h — Block 1 on July 5%
5017 Block 2: 4.5 days; June 28 — July 2"d N then 14 h — Block 4
Block 3: 10.5 days; June 28t — July 8t N then 9 h — Block 2
Block 4: 4.5 days; June 28th _ July ond N end: 14 h — Block 3 on July 7t
mean = 6.00 days mean = 11.00 h
4 heifers per paddock 33 cow-calf pairs per paddock
Block 1: 7.5 days; June 28 — July 5 start: 18 h — Block 1 on July 5t
2018 Block 2: 7.5 days; June 28" — July 5th N then 12 h — Block 4
Block 3: 10.5 days; June 28" — July 8t N then 13 h — Block 2
Block 4: 5.5 days; June 28t — July 3 N end: 24 h — Block 3 on July 8t
mean = 7.75 days mean = 16.75 h
4 heifers per paddock 33 cow-calf pairs per paddock
Block 1: 11.5 days; June 18" — June 29t start: 8.5 h — Block 1 on June 27th
2019 Block 2: 7.5 days; June 18 — June 25t N then 12 h — Block 4

Block 3: 12.5 days; June 18" — June 30t
Block 4: 4.5 days; June 18" — June 224
mean = 9.00 days

N then 14 h — Block 2
N end: 22 h — Block 3 on June 30th
mean = 14.13 h
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(A) Block 4

Block 1
(B)

and calves were estimated to weigh 136 kg. A ran-
dom number generator was used to determine the
assignment of a grazing treatment within each pad-
dock, and treatments are shown from an aerial drone
image in Figure 1B.

To determine the potential annual grazing time
in each paddock, we coupled the points where her-
baceous biomass and vegetation visual obstruction
were both measured to develop a yearly predictive
linear regression equation (Figure 2) using vegetation
visual obstruction- height (x) to predict herbaceous
biomass (y) across each paddock using all vegeta-
tion visual obstruction readings. To estimate initial
stocking rates (NRCS 2009), we then parameterised
a grazing time model using herbaceous biomass, 50%
forage allocation to cattle, and an animal unit (AU)
equivalent to account for different animal types and

Block 3

Block 2

Figure 1. (A) Treatment design
to for assessing the influence of
grazing on soil health at the Uni-
versity of Wyoming’s James C.
Hageman Sustainable Agricul-
tural Research and Extension
Center (SAREC) facility in Lin-
gle, Wyoming, USA. The study
was a randomised complete block
design (RCBD) with the 3 grazing
treatments (NG — not grazed;

MRG - moderate rotationally
grazed with 4 herds consisting of
4 heifers each; UHD — ultra-high
density rotationally grazed con-
sisting of a single herd of 33 cows
with calves) replicated 4 times
(i.e., blocks). Arrows indicate
the direction of movement of
the UHD herd of cattle through
paddocks. (B) Drone image of
study site and treatment effects.
Each paddock was 0.405 hectares
in size and grazed with Angus
crossbred cattle (Bos taurus)
from 2017-2019

sizes where the total predicted biomass available
using herbaceous biomass calibration equations
adjusted to a 50% standard allocation of forage to
animals and then relativised for the number of ani-
mals of either heifers, cows + calves, or bulls based
on an AU equivalent adjusted for animal size and
calf age (here considered as 1.2 for heifers, 1.7 for
cows, 2.2 for bulls; Stam et al. 2018), and 11.8 kg/day
is the daily forage requirement relative to body
weight or in other words, 2.6% of body weight in
air dry forage daily for a 454 kg cow with a calf
which is the adjustment basis for an AU and then for
1 month to sustain 1 AU (i.e., an animal unit month
or AUM) (Stam et al. 2018). The AUM concept is
commonly applied when grazing rangelands in the
western United States. Stocking details are explicitly
presented in Scasta et al. (2023). The approximate
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total MRG herd (heifers) weight was 5 380 animal
kg/ha, and the approximate total UHD herd (cows
with calves) weight was 67 812 animal kg/ha (Grazing
Treatments described in Table 1). Grazing start
date, end date, and animal numbers are described
in detail in Table 2.

Baseline soils, vegetation, and grazing time data
were collected prior to the establishment of grazing
treatments on 24-25 June 2017. Vegetation and graz-
ing time data were again taken prior to initiation of
grazing each year (specifically on 23-24 June 2018
and 14-15 June 2019 (2018 and 2019 pre-grazing soil
sampling was not performed). Along the diagonal long
axis of each paddock, a permanent transect stretch-
ing from northeast to southwest was established.
Herbaceous biomass was clipped at 27.4 m and 54.9 m
along the transect within a 20 x 50 cm quadrat.
Herbaceous biomass samples were then dried at 60 °C
for 48 hin a forced air oven and weighed. Along the
same transect, vegetation visual obstruction read-
ings using a modified Robel pole (Robel et al. 1970)
were recorded at nine intervals (9.1, 18.3, 27.4, 36.6,
45.7,54.9, 64.0, 73.2 and 82.3 m) with observations
at each point from each of the four cardinal direc-
tions (north, south, east, and west). At each interval,
the mean of the four directional readings was then
calculated and recorded as the visual obstruction

348
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value. Vegetation visual obstruction was sampled
before grazing (to determine grazing time as described
above). In addition, vegetation visual obstruction,
ground cover classes (perennial native grass, annual
exotic grass, litter, and bare ground) were estimated
using a 20 x 50 cm quadrat and Daubenmire cover
classes (Daubenmire 1959) at the same points along
the same transect as vegetation visual obstruction
readings), and surface temperatures were sampled
after grazing on 8 July 2017, 8 July 2018, and 30 June
2019. Ground surface temperatures were taken using
Performance Tool W89722 Infrared Thermometer by
holding the instrument at waist height (0.92 m) above
ground and pointing the laser at the surface of the
ground which was the point of detection. Reference
temperatures were also taken at each point using
a white sheet of paper following Twomey et al. (1986).

Soil samples to a 10 cm depth (Bird et al. 2002)
were taken at four intervals (18.3, 36.6, 54.9 and
73.2 m) along the same permanent transect used
for herbaceous biomass, vegetation visual obstruc-
tion, and cover class measurements and the four soil
samples per paddock were pooled into a single com-
posite sample. Soil samples were collected at three
intervals: 2017 prior to grazing, 2019 — 1 week after
grazing, and 2019 — 6 weeks after grazing in order to
determine if a lag in response occurred (Van Syoc et
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al. 2022). Soil samples were immediately placed in
a cooler on ice until delivery to Ward Laboratories
in Kearney, Nebraska, USA for analyses within 24 h.
Soil chemical analyses included soil organic C the
following clarification about soil organic C deter-
mination (determined with a LECO analyser; 1 g
of soil treated with sulfurous acid, then ignited in
oxygenated combustion chamber 1 350 °C, then as-
sessed in infrared absorption detector), soil organic
matter (determined via loss on ignition for 2 h in
drying oven 105 °C then in asher muffle furnace), pH,
salts, cation exchange capacity, ammonium, boron,
calcium, copper, iron, magnesium, nitrate, nitrogen
(total, available N Haney, organic N release Haney,
organic N reserve Haney), phosphorous (total and
available Haney), potassium (total and available
Haney), sodium, sulfate, and zinc. Soil biological
analyses included a suite of biological metrics in-
cluding actinomycetes (biomass and %), arbuscu-
lar mycorrhiza fungi (biomass and %), saprophytes
(biomass and %), gram positive (+) bacteria (biomass
and %), gram negative (—) bacteria (biomass and %),
protozoa (biomass and %), total bacteria (biomass
and %), total fungi (biomass and %), undifferentiated
(biomass and %), total phospholipid-derived fatty
acids (PLFA biomass), several ratios (fungi:bacteria,
gram (+):gram (—), organic C:organic N, saturated:
unsaturated fatty acids, monosaturated:polyun-
saturated fatty acids, and predator:prey (Protozoa:
Bacteria)), Functional Group Diversity index, water
extractable organic C (WEOC; H,0-OC), water
extracted organic N (WEON; H,0-ON)), respiration
(CO,-C), and a soil health calculation. Methods
used were specific to each soil metric and followed
industry standards as described in the Ward Guide
(2021) and in Gergeni et al. (2022).

Finally, to understand the potential role of pre-
cipitation and temperature in explaining our results,
we extracted daily temperature and precipitation
data for June, July, August, and September for each
of the three years of the experiment (2017, 2018,
and 2019) from the PRISM platform (PRISM 2023)
which derives estimates at a 4 km resolution using
the AN18d data set and extrapolation method that
uses digital elevation models from ~10 000 weath-
er stations (Daly et al. 2008) weighted relative to
a physiographic similarity.

Statistical analysis. To assess stocking rate and
pre- and post-graze vegetation responses, we used
mixed effects analysis of variance (ANOVA) models
with grazing treatment (NG, MRG, or UHD) as the

main fixed effect and block as a random effect by
year. Similar models were used to assess ground
temperature and ground cover responses by year. To
compare the effects of grazing treatment or sampling
interval on response variables, we analysed soil re-
sponse variables using similar mixed-effect ANOVA
models. In each model, the main fixed effect was either
grazing treatment or sampling interval with block as
the random effect. For the treatment analyses, each
model was assessed within each sampling timing in-
terval. For the sampling timing analyses, each model
was assessed within each treatment. Each potential
response variable was independently assessed for
distribution using the Shapiro-Wilk W-test, where
values > 0.05 indicated the normal distribution of
population data. Data were transformed when needed
using arcsine transformation for percentage data or
logl0 transformation for numerical data. The raw
data were used for all visualisations and reporting of
means and standard errors, while all statistical tests
used transformed data as appropriate. Each pairwise
test was based on the null hypothesis that soil, micro-
bial, and soil/forage physiological response variables
would not differ based on grazing treatment, with the
alternative hypothesis that soil, microbial, and soil/
forage physiological response variables would differ
based on grazing treatment. When significance was
indicated during univariate analyses, means were
separated using Tukey’s HSD (honestly significant
difference) posthoc test. P value and standard er-
ror were reported. Significance was calculated at
a P-value of a = 0.05. All univariate analyses were run
in JMP Pro (2019). We then conducted two separate
constrained multivariate analyses using redundancy
analysis (RDA) for the soil chemical variables and then
the soil microbiology variables (Smilauer and Lep$
2014, CANOCO 5 2017). Constraining explanatory
variables were grazing treatment, sampling interval,
and block and soil response data were log-transformed
and centred by soil response variables. We assessed
pseudo-F and P-values for the first constrained axis
and all constrained axes with a permutation test with
1 000 iterations. Sample diversity was determined
with the Shannon-Wiener index.

RESULTS

Stocking rate and vegetation structure. Across
treatments, the stocking rate averaged 2.22 (+ 0.24)
AUMs/ha in 2017, 3.03 (+ 0.21) AUMs/ha in 2018,
and 2.98 (+ 0.31) AUMs/ha in 2019, and stocking
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Figure 3. Comparison of annual mean stocking rates by grazed treatment for 2017-2019 at the University of
Wyoming’s James C. Hageman Sustainable Agricultural Research and Extension Center (SAREC) facility in Lin-
gle, Wyoming, USA. Stocking rates were based on a parametrised grazing time model using herbaceous biomass
(shown in Figure 1), 50% forage allocation to cattle, and an animal unit (AU) equivalent to account for different
animal types and sizes where the total predicted biomass available using herbaceous biomass calibration equa-
tions adjusted to a 50% standard allocation of forage to animals and then relativised for the number of animals
of either heifers, cows + calves, or bulls based on an AU equivalent adjusted for animal size and calf age (here
considered as 1.2 for heifers, 1.7 for cows, 2.2 for bulls), and 11.8 kg/day is the daily forage requirement rela-
tive to body weight (or in other words, 2.6% of animal body weight in air dry forage daily for a 454 kg cow with
a calf which is the adjustment basis for an AU and then for 1 month to sustain 1 AU (i.e., an animal unit month
or AUM) (Stam et al. 2018, Scasta et al. 2023)
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Figure 4. Comparison of the mean (A) pre- and (B) post-grazing forage visual obstruction height in 2017, 2018,
and 2019 relative to grazing treatments (NG — not grazed; MRG — moderate rotationally grazed; UHD - ultra-
high density rotationally grazed). The experiment was conducted from 2017-2019 to assess the influence of
cattle grazing density on soil health at the University of Wyoming’s James C. Hageman Sustainable Agricultural
Research and Extension Center (SAREC) facility in Lingle, Wyoming, USA
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rate in 2017 was significantly lower than in 2018 and
2019 (P = 0.0041; Figure 3). Within the year, there
were no stocking rate differences for treatments for
any of the years (all P-values > 0.05; Figure 3). Prior
to grazing each year, the vegetation visual obstruc-
tion was 10.7 (+ 2.0) cm in 2017, 12.2 (+ 0.80) cm
in 2018, and 14.01 (+ 1.25) cm in 2019, and there
were no differences in vegetation structure relative
to treatment (all P-values > 0.05; Figure 4A). After

grazing each year, vegetation structure was lower
for the two grazed treatments when compared to the
ungrazed control as expected (all P-values < 0.05;
Figure 4B). The vegetation visual obstruction in
grazed treatments ranged from 39% to 59% (mean =
48% (+ 3.7) of the NG treatment, which corresponds
with the 50% grazing utilisation target.

Soil surface temperature, litter, and plant cover.
Treatment was found to have no consistent effects
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Figure 5. Ground surface temperature and plant cover classes ((A) A temperature; (B) litter estimates; (C) per-
ennial native estimates, and (D) annual exotic)) measured using a 20 x 50 cm quadrat and Daubenmire cover
classes (Daubenmire 1959) at the same points along the same transect as vegetation visual obstruction readings)
sampled after grazing on 8 July 2017, 8 July 2018, and 30 June 2019 relative to grazing treatments (NG — not
grazed; MRG — moderate rotationally grazed; UHD - ultra-high density rotationally grazed). The experiment
was conducted from 2017-2019 to assess the influence of cattle grazing density on soil health at the University
of Wyoming’s James C. Hageman Sustainable Agricultural Research and Extension Center (SAREC) facility in
Lingle, Wyoming, USA
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across years on any of the soil/forage cover response
variables (Figures 5A-D). Interestingly, the 2018
post-grazing mean A temperature °C was significantly
greater in the MRG and UHD treatments (14.2 +
0.4 °C and 15.0 = 0.8 °C, respectively) compared to
the NG treatment that had a mean A temperature °C
0f 10.5 + 0.4 °C post-grazing (P = 0.0004), 2018 pre-
grazing mean perennial native cover estimates which
were greater in the NG treatment (43.1 + 2.4 %)
compared to the similar MRG (32.3 + 3.2%) and UHD
treatments (34.7 £ 2.9%) (P = 0.02), and 2018 pre-
grazing mean annual exotic cover estimates which
were greater in the UHD treatment (9.8 + 3.3%)
compared to the similar MRG (4.5 + 0.9%) and NG
treatments (3.7 + 0.7%) (P = 0.02) (Figure 5). The
main annual exotic species was Bromus tectorum.
Litter cover did not differ by treatment in any of the
years (Figure 5B), and bare ground was not different
for any of the years (data not shown).

Soil organic matter, organic carbon, and chemi-
stry. There were no significant grazing treatment
effects for any of the soil chemistry variables (all
P-values > 0.05) with the exception of zinc (Table 3),
however, sampling interval was significant (P < 0.05)
for all grazing treatments for 8 of the soil chemistry
variables (copper, iron, magnesium, nitrate, available
N, organic N release, phosphorous, and zinc), for
grazed treatments only for 2 soil chemistry variables
(sodium and sulfate), for the ungrazed control only
for 1 soil chemistry variable (pH), and for the UHD
grazing treatment only for 1 soil chemistry variable
(boron). Means and treatment effects are presented
in Table 3, and sampling interval effects within treat-
ment are presented in Table 4.

Soil microbiology. There were no significant graz-
ing treatment effects for any of the soil biological
variables post-grazing (all P-values > 0.05), however,
sampling interval was significant (P < 0.05) for all
grazing treatments for 2 of the soil biological vari-
ables (respiration and the soil health calculation), for
both grazed treatments only none were significant,
for the ungrazed control only for 4 soil biological
variables (gram (+) bacteria %, gram (-) bacteria%,
gram (+):(—) bacteria ratio, and water extracted
organic C [WEOC]), and for the UHD grazing treat-
ment only for 4 soil biological variables (protozoa
biomass, protozoa %, predator:prey ratio (Protozoa:
Bacteria ratio), and functional group diversity index.
Means and treatment effects are presented in Table 5,
and sampling interval effects within treatment are
presented in Table 6.
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Constrained ordination. In the soil chemistry-con-
strained ordination, the first axis and all axes combined
were significant (both P-values < 0.01; Figure 6A).
The first axis had an eigenvalue of 0.2892 and ex-
plained 52.95% of the fit variation, and the second
axis had an eigenvalue of 0.2215 and explained an
additional 40.57% of the fit variation. The first axis
has a sampling interval effect with the 6-week post-
grazing sampling in 2019 to the right of the biplot and
the other sampling intervals to the left. In addition,
there is spatial separation of the centroids for both
grazing treatments compared to the NG treatment.
The first axis is explained by nitrogen dynamics and
specifically the organic N reserve, organic N release,
and ammonium, while the second axis is explained
by nitrate, pH, boron, zinc, and salts (Figure 6A).

In the soil microbiology-constrained ordination,
the first axis and all axes combined were significant
(both P-values < 0.02; Figure 6B). The first axis had
an eigenvalue of 0.2073 and explained 79.20% of the
fit variation, and the second axis had an eigenvalue of
0.0352 and explained an additional 13.46% of the fit
variation. The first axis has a sampling interval effect
with the both 2019 post-grazing sampling centroids to
the left of the biplot and the 2017 sampling centroid
to the right. In addition, there is spatial separation
of the centroids for all treatments. The first axis is
explained by the fungi:bacteria ratio, the predator:
prey ratio, H,O organic C, the mono:poly ratio, and
gram (+) bacteria, while the second axis is explained
by arbuscular mycorrhiza fungi, the organic C:N
ratio, and gram (—) bacteria (Figure 6B).

Precipitation and temperature. Regarding pre-
cipitation, 2017 was the driest year and 2019 the
wettest year based on the cumulative precipita-
tion for these four months, with 114.3 mm in 2017,
157.2 mm in 2018, and 197.0 mm in 2019 (Figure 7).
Regarding temperature, 2017 was the warmest year,
and 2019 was the coolest year based on the mean
temperature for these four months, with 19.9 °C in
2017,19.7°Cin 2018, and 19.5 °Cin 2019 (Figure 7).
From a monthly perspective, the final year of sam-
pling (2019) had the wettest July and August, the
coolest June and July, and the hottest August and
September of the months in the study. Based on
the results above, it does not appear that extremely
anomalous precipitation may have driven results;
however, relative responses of some variables could
be explained by the drier and warmer conditions at
the beginning of the experiment as opposed to the
wetter and cooler conditions at the end.
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Figure 6. Constrained ordination using redundancy analysis (RDA) of (A) 23 soil chemical responses and (B)

30 soil biological responses measured in 2017 (pre-grazing) and 2019 (post-grazing week 1 and week 6) rela-

tive to grazing treatments (NG — not grazed; MRG — moderate rotationally grazed; UHD — ultra-high density

rotationally grazed). The experiment was conducted from 2017-2019 to assess the influence of cattle grazing

density on soil health at the University of Wyoming’s James C. Hageman Sustainable Agricultural Research and

Extension Center (SAREC) facility in Lingle, Wyoming, USA
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Figure 7. Monthly (A) cumulative precipitation and (B) mean temperature for June, July, August, and September
for each of the three years of the experiment (2017, 2018, and 2019) from the PRISM weather data platform,
which derives estimates at a 4 km resolution using the AN18d data set and extrapolation method that uses digital

elevation models from ~10 000 weather stations weighted relative to a physiographic similarity. *indicate the

driest month or hottest month for the period of study

DISCUSSION

A multitude of grazing studies have resulted in
claims that animal rotation, stocking rate, density, or
grazing exclusion may enhance soil properties (Teague
et al. 2011, 2013, Steffens et al. 2011, Wiesmeier et
al. 2019), but with changes to forage species func-
tional groups (Frank et al. 1995, Reeder and Schuman
2002, Ingram et al. 2008). However, in our study, we
found minimal changes for a broad suite of soil and
ground cover response variables relative to grazing but
a strong influence of sampling timing (Badgery et al.
2017, Van Syoc et al. 2022). Importantly, stocking
rate and vegetation structure outcomes in our two
contrasting grazing treatments were similar as time
was allowed to vary to achieve similar utilisation
levels while animal density was different (Scasta et
al. 2023). Our findings of no response of soil organic
carbon to grazing were similar to Henderson et al.
(2004), Li et al. (2012), Shrestha and Stahl (2008),
Derner et al. (2018), and Briske et al. (2008, 2011)
but in contrast with those of Teague et al. (2011).
Importantly, the context of the study site was an
intact native prairie with initial values that did not
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change relative to treatment or sampling interval,
indicating "Very Good" soil health rating includ-
ing mean total PLFA biomass of 3 703 ng/g, mean
functional group diversity of 1.53, mean organic C:
organic N of 13.7, and the fungi:bacteria ratio which
is an indicator of community composition (Ward
Guide 2021). Similarly, the lack of change relative
to treatment or sampling interval in the saturated:
unsaturated fatty acid ratio is insightful because
this is an indicator of stress and community activity
where stressed soil communities will increase the
proportion of unsaturated fatty acids (Norris et al.
2023). Thus, the lack of any discernible directional
(negative or positive) or magnitudinal change rela-
tive to the different grazing treatments on soil health
properties, coupled with the information above,
suggests that this northern mixed-grass prairie may
be considered highly functioning and resilient to
the rational intensification of animal density (Seé
et al. 2017).

Similar to Banerjee et al. (2000) and Raiesi and
Riahi (2014), who found little difference in soil bio-
chemical properties in grazed non-woody rangelands,
treatment had no effect in the northern mixed-grass
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prairie site in our study. When 2019 post-grazing
soil analyses on AMF biomass and organic C:N were
analysed, ((both were found to be good indicators
of soil health practices/management (Bedini et al.
2007, Hagny 2018)), the effect of the three grazing
treatments were insignificant. Our results of little
response of soil biological properties to grazing were
similar to Kieft (1994). These results differ from
many published studies that found soil biological
response variables were enhanced by grazing (Song
et al. 2008, Teague et al. 2011), the removal of graz-
ing (Bai et al. 2013), negatively affected by grazing
(Holt 1997), or increased soil respiration but de-
creased microbial biomass (Zhou et al. 2017). Our
non-significant treatment results could be partly
explained by the variable responses of soil surface
temperature, litter, and plant functional groups,
which did not differ between treatments after graz-
ing all years. In regards to soil chemical responses,
grazing has been shown to have a minimal impact
as compared to catastrophic disturbances such as
fire or weather and subsequently, inter- and intra-
annual weather patterns in our study seemed to be
the primary driver (Helliwell et al. 2010, Boudjabi
and Chenchouni 2022).

The results reported herein have application for
livestock producers on how environmental factors
such as temperature and moisture at the time of
sampling can lead to false conclusions about treat-
ment effect on response variables (Dormaar et al.
1977, Banerjee et al. 2000, Segoli et al. 2015) if soil
monitoring is used as a management indicator. For
example, some metrics are more stable and consist-
ent through time, such as soil organic carbon, but
any changes can be slow relative to management
expectations. In contrast, many soil measurement
metrics can fluctuate relative to temperature and
soil moisture, such as respiration and may fluctuate
independently of management. This temporal aspect
of soil response to management is critical to quantify
because changes in soil properties may take decades
to detect with different grazing management treat-
ments (Liebig et al. 2006, Derner and Schuman 2007).
From a range management perspective, stocking rate,
animal distribution, and their relationship to current
environmental conditions could be considered the
most important rangeland production and conserva-
tion tool and need to be placed in such context when
a livestock producer is striving to achieve desired
outcomes or draw accurate conclusions about graz-
ing management (Briske et al. 2011, Sanderson et al.

2016). For example, the effect of grazing intensity
on soil carbon must be contextualised with climate,
soil type, and grazing history (Floate 1981, Potter
et al. 2001, Eyles et al. 2015, Abdalla et al. 2018),
and couched within the appropriate aridity frame
of reference (Teague et al. 2011, Teutscherova et al.
2020). In addition, the importance of developing
quantitative baseline information is critical to under-
standing both storage and accumulation relative to
land use history, the environment, and management
(Wiesmeier et al. 2019).

For livestock producers to appropriately and ac-
curately assess grazing management and its effects
on soil and forage properties, affordable and com-
prehensive field-derived data must be collected
(Gergeni and Scasta 2019) relative to the current
proper stocking rate. It is equally important for
producers to account for and understand the effect
of environmental conditions on sampling results
and accurately differentiate between management or
environmental outcomes. More regional, replicated,
long-term studies (Banerjee et al. 2000, Teague et
al. 2011, Teague et al. 2013, Sanderson et al. 2016,
Basche and DeLonge 2017, Derner et al. 2018, 2019),
an established appropriate baseline (Fernandez et al.
2008, McSherry and Ritchie 2013, Derner et al. 2019),
consistent monitoring (Sanderson et al. 2020), similar
sampling procedures, soils knowledge (Schuman et
al. 1999), and quantitative data on stocking metrics
(Allen et al. 2013) are needed to draw accurate con-
clusions about the effects of grazing on rangeland
properties. Only then can the dissemination of grazing
information on rangeland soil health become use-
ful to producers. Because the temporal scale of this
study could be considered short relative to changes
in soil properties in cold, arid steppes (Shrestha and
Stahl 2008, Eyles et al. 2015), additional years of data
may help to elucidate potential enhancements to
soil properties over the long-term which will yield
insights for additionality in soil carbon contracts.
Finally, because soil organic matter and organic car-
bon were unaffected by sampling interval suggests that
they may be less sensitive to inter- and intra-annual
climate and weather variability, rendering them as
useful indicators of management effects over longer
time scales (Banerjee et al. 2000), particularly for
grazing management on rangelands.
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