
Nitrogen, one of the key nutrients essential for plant 
growth in soil, plays a crucial role. Organic matter in 
the soil can be decomposed by microorganisms into 
inorganic nitrogen. The level of alkali-hydrolysed 
nitrogen (AHN) is increased, which is beneficial for 
plant absorption and utilisation. As a major source 
of nutrients for plant growth, soil nutrient content 
is an important indicator for evaluating the environ-
ment for plant growth. Rapid access to soil nutrient 
information is an important requirement for the 
development of modern precision agriculture. As 

a major component of soil, soil nitrogen is an im-
portant indicator of soil fertility. Under certain 
conditions, the nitrogen content level marks the 
soil fertility level. It is the main source of nutrients 
needed for plant growth. Soil nitrogen plays a criti-
cal role in plant growth and development. Nitrogen 
deficiency affects the protein content of crops. When 
organic matter decomposes, most of the nitrogen 
undergoes conversion to inorganic nitrogen and is 
then released into the soil (Tahmasbian et al. 2018). 
If nitrogen in the soil is not released and converted 
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in a timely manner, it may result in nitrogen loss 
and soil infertility. The decomposition of the alkali-
hydrolysed nitrogen (AHN) can facilitate the transfor-
mation of organic nitrogen and sustain soil fertility. 
Therefore, monitoring the content of the AHN in soil 
has become a crucial task. Given the significance of 
establishing AHN levels for advancing soil formula 
fertilisation and precision agriculture, researchers in 
relevant fields have dedicated themselves to explor-
ing expedited and real-time methods for assessing 
AHN content. However, the conventional method of 
determining the AHN content involves laboratory 
analysis through chemical determination. The results 
obtained are highly accurate. However, the testing 
procedure is demanding, lengthy, and expensive in 
terms of both time and money. Moreover, the labo-
ratory analysis process requires a series of chemical 
pretreatments for samples, which inevitably generate 
harmful chemical waste to the environment. The 
reasons mentioned above render laboratory chemi-
cal determination methods inadequate for fulfilling 
the needs of monitoring the content of the AHN in 
large-scale, rapid and dynamic scenarios.

Hyperspectral imaging technology is a research 
focus for scientists in numerous agriculture-related 
institutes. This has been widely used in soil clas-
sification, composition detection and other similar 
research. At present, visible-near infrared (VNIR) 
hyperspectral technology is the primary means for 
rapidly detecting the AHN content (Pechanec et 
al. 2021). This technology has increasingly become 
a valuable method for acquiring soil properties due 
to its advantages of speed, simplicity, non-contact 
and non-destructiveness. In recent years, extensive 
research has focused on collecting VNIR spectra in 
laboratory conditions and utilising them to predict 
soil property contents. A well-established soil sam-
ple pretreatment system has also been developed, 
including sample drying, grinding, and screening. 
This process significantly decreases the impact of 
environmental disruptions like soil texture, surface 
particles, or moisture on spectral measurements.

Soil, a product of rock weathering, comprises com-
plex aggregate. The spectral characteristics of soil are 
primarily influenced by the molecular vibrations and 
electronic transitions of various components within 
the soil, which can generate distinct peaks in differ-
ent bands. Due to variations in soil components, the 
electromagnetic radiation absorbed by each compo-
nent differs from that of the external light source, 
resulting in different jump energy level differences. 

Consequently, distinct absorption characteristic 
bands are present in the soil spectral curve. This 
forms the basis for spectral prediction modelling 
of soil constituents. The soil structure is complex, 
and its spectrum results from various components’ 
comprehensive superposition of reflectance. The 
spectral information is frequently intertwined with 
the feedback information of various factors, such as 
salt and water. This information could cause non-
specific soil spectra, thereby impacting the accuracy 
of spectral data. In addition, modelling accuracy 
using raw spectral data is frequently low owing to 
the interference from the instrument’s own noise 
signal, spectral scattering and spectral covariance. 
Therefore, removing inaccurate information from 
spectral data and improving model accuracy have 
been topics of concern among scholars in recent 
years. Numerous studies have demonstrated that 
employing spectral smooth denoising, mathematical 
transformation, and other preprocessing methods 
can substantially enhance the dependability and 
precision of the spectral data. It has been found that 
utilising suitable regression modelling algorithms 
can significantly enhance the predictive accuracy 
of models. Regression modelling algorithms typi-
cally comprise both linear and nonlinear regression 
models. Among the linear regression models com-
monly used are multiple linear regression, partial 
least squares regression and principal component 
regression analysis. Due to the intricate non-linear 
correlation between spectral reflectance information 
and soil properties, the nonlinear regression model 
may offer greater predictive power for soil property 
content. Therefore, researchers have applied vari-
ous nonlinear models to analyse this area, such as 
artificial neural networks, support vector machine 
regression, random forest regression, and multivari-
ate adaptive regression spline. These models have 
contributed to the research and analysis in this field. 
Liu and Xiao (2021) developed a predictive model 
for AHN in soil using ridge regression (RR) and 
partial least squares regression (PLSR). Chen et al. 
(2022) developed machine learning models based on 
the full and characteristic bands, respectively. The 
best prediction model for various nitrogen tests was 
obtained by thoroughly comparing the evaluation 
metrics. Zhang et al. (2022) developed a model uti-
lising RR, PLSR, support vector machine regression 
(SVR), and random forest (RF) to estimate nitrogen 
content in winter wheat leaves quantitatively. Tang 
et al. (2022) investigated the optimal estimation 

597

Plant, Soil and Environment, 69, 2023 (12): 596–607	 Original Paper

https://doi.org/10.17221/421/2023-PSE



model for soil total nitrogen using fractional order 
derivative (FOD) and found that this enhanced the 
model’s estimation ability. Niu et al. (2023) analysed 
the spectral data with various pretreatment methods 
and concluded that the accuracy of the soil total 
nitrogen content prediction model was influenced 
by the chosen preprocessing method.

In this work, we examined the soil from the millet 
experiment field during various growth periods. Two 
hundred twenty-five soil samples were collected for 
analysis. We were using Visual Basic 6.0 (Microsoft, 
Redmond, USA) to build a hyperspectral data pre-
processing program. Afterwards, we obtained the 
average hyperspectral data from 225 soil samples. 
Combining various preprocessing methods, the 
CARS algorithm was utilised for feature variable 
extraction of spectral data. Then, the prediction 
models of the AHN were established by combin-
ing three machine learning algorithms: PLSR, back 
propagation neural network (BPNN) and LSSVM. 
This work aims to establish the prediction model 
of the AHN content in soil to provide theoretical 
support for rapid detection.

MATERIAL AND METHODS

Experimental design and sample collection. This 
experiment was conducted at the experimental site. 
The region has a warm, temperate continental cli-
mate with four distinct seasons. The average annual 
temperature, average annual total rainfall, average 
annual sunshine hours, and average annual frost-free 
days are 10.4 °C, 397.1 mm, 2 527.5 h, and 179 days, 
respectively. The region is blessed with ample sun-
light, a mild climate, and fertile soil. The main soil 
types in the area are loess-like calcareous brown soil 
and alluvial tidal soil, with a small amount of brown 
soil and sulfate salted tidal soil. This experiment uti-
lised the "Jin Gu 21" sorghum cultivar. The fertiliser, 
purchased from Jingtaisifang (China) Biotechnology 
Co., Ltd, had an organic matter content of not less 
than 60%, an effective number of living bacteria of 
300 million per gram, and a nitrogen content of not 
less than 6% in the fertiliser. All fertilisers are applied 
at once as a base fertiliser.

The test plot was 3 acres in size. The topography 
is flat, and there are differences in soil fertility. It 
is recommended to use the checkerboard sampling 
method, taking a mixed sample every 10 to 15 points 
(Niu et al. 2017, Li et al. 2022b). Before collecting the 
sample, it was necessary to scrape off the surface soil 

layer, which was 2 to 3 mm thick. Then, the soil auger 
was used to collect soil cores from 0–20 cm depth. 
Next, the soil samples taken at each sampling point 
were spread onto plastic sheets at the head of the 
field. Crush the large soil samples. After that, stones 
and plant and animal residues were removed. Finally, 
the soil was mixed thoroughly to make a composite 
soil sample. The soil samples are naturally air-dried 
in the laboratory. After grinding, the samples were 
sieved through a 250-micron mesh screen, and the 
sieved soil samples were individually packaged. For 
testing purposes, a total of 225 samples were col-
lected from different soil fertility conditions during 
the seedling, jointing, tasseling, filling, and maturity 
stages, with 45 samples collected at each stage. The 
samples were recorded and numbered for future use. 
Using the quadrat method for sampling, each sample 
was divided into two parts. One portion was used 
for laboratory determination of AHN content, and 
the other portion was used to collect near-infrared 
hyperspectral images of the soil. The hyperspectral 
images of each sample were collected. Then, the 
physicochemical values were measured.

Hyperspectral image acquisition. The NIR hy-
perspectral images were acquired using the Starter 
Kit indoor mobile scanning platform (Headwall 
Photonics, Bolton, USA). The system consists of 
several components: an indoor mobile scanning 
platform, a micro-sized near-infrared hyperspectral 
imaging device with an aperture of 1.4 mm and a fo-
cal length of 25 mm, a light source, a controller, and 
a computer. The movement speed, push-sweep stroke, 
and distance between the lens and the surface of the 
soil sample for the system were set to 2.721 mm/s, 
100 mm, and 28 cm, respectively, to obtain clear 
and undistorted images. This system captures 170 
spectral bands from 900 to 1 700 nm with a spectral 
resolution of approximately 0.727 nm. The spectral 
range with a total of 148 bands, ranging from 950 to 
1 650 nm, was chosen due to the significant reflec-
tivity error near the measuring range.

First, fill the soil sample into a round vessel about 
5 cm in diameter and 3 cm deep. Next, flatten and 
compact the soil. Finally, the circular vessel was 
placed on the mobile scanning platform to obtain 
its hyperspectral image.

To reduce the interference from the system light 
source and dark current and to calculate the relative 
reflectance spectral values of the scanned objects, 
black and white correction of the hyperspectral im-
ages was performed before the experiment to ensure 
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the accuracy of the experimental results. During the 
calibration process, the first step was to close the 
lens cap of the hyperspectral camera and acquire 
a full black calibration image with a reflectance of 0. 
Next, remove the lens cap and scan the calibration 
whiteboard to capture an all-white calibration image 
with a reflectance greater than 99.9%. Finally, the 
hyperspectral image information was corrected by 
applying the black-white calibration formula. The 
formula is as follows:

(1)

Where: R – corrected hyperspectral image; R0 – original 
hyperspectral image; Rw – white background image with 
the standard white calibration plate (> 99.9% reflectance); 
Rb – dark background image with the lens cap closed (< 0% 
reflectance).

Physicochemical determination of the AHN. AHN 
was determined by the alkaline diffusion method 
using 1 mol/L NaOH (Qi et al. 2018, Xie et al. 2019). 
After passing the air-dried soil sample through the 
250-micron sieve, 2 g of soil sample and 1 g of fer-
rous sulphate powder were weighed and distributed 
evenly in the outer chamber of the diffusion dish. 
Rotate the diffusion dish gently and horizontally to 
flatten the soil sample. Add 2 mL of a 2% boric acid 
solution and 1 titrimetric nitrogen mixing indicator 
(phenolphthalein indicator) in the inner chamber of 
the diffusion dish. Apply alkaline gel solution to the 
outer chamber edge of the diffusion dish. Cover the 
ground glass and rotate it several times so that the 
ground glass can be glued completely to the edge 
of the diffusion dish. Cross the two rubber bands in 
a crisscross pattern to tighten the loop. Next, rotate 
one side of the ground glass slowly to expose a slit in 
the outer chamber of the diffusion dish and add 10 mL 
of 1.2 mol/L NaOH solution quickly to it. Then, 
turn the ground glass tightly. The diffusion dish was 
rotated horizontally and gently on the laboratory 
bench to mix the solution well with the soil. It was 

then placed in an incubator at 40 °C. After 24 h, the 
ammonia absorbed in the boric acid solution in the 
inner chamber of the diffusion dish was determined 
by titration with 0.01 mol/L hydrochloric acid stand-
ard solution using a microburette. The endpoint was 
the colour change from blue to fuchsia. The content 
of the AHN was calculated according to Eq. 2. The 
content measured through the chemical method is 
shown in Table 1.

(2)

Where: AHN – alkali-hydrolysed nitrogen (mg/kg); C – 
concentration of the hydrochloric acid standard solution 
(mol/L); V – volume of the hydrochloric acid standard solu-
tion used in the sample determination (mL); V0 – volume of 
the hydrochloric acid standard solution used in the blank 
determination (mL); 14 refers to the molecular weight of 
nitrogen (g/mol); 1 000 refers to the conversion factor; W – 
weight of the soil (g).

Extraction of spectral data. Hyperspectral im-
ages contain both spectral and image information 
of soil samples. Each pixel point on the image has 
a corresponding diffuse reflectance spectral curve. In 
order to facilitate the selection of regions of interest 
(ROI) and the batch extraction and processing of 
spectral data, the SpectralView software (Headwall 
Photonics, Bolton, USA) was used for data extrac-
tion in this work. The software had been developed 
using Visual Basic (version 6.0, Microsoft, Redmond, 
USA) for secondary development, which has pixel 
generation and batch processing capabilities. The el-
liptical model was used to determine the ROI centre 
coordinates, X/Y half-axis lengths (a, b), and X/Y 
axis spacing (Δx and Δy were set to 1). Following the 
principle of "left to right, top to bottom" in the target 
image, the pixels in the ROI were captured sequen-
tially according to the Eq. 3, and the ROI coordinate 
matrix was generated. Images were imported using 
the SpectralView software, and reflectivity informa-
tion was actively extracted based on the coordinate 

Table 1. Characteristic statistics of the content (mg/kg) of alkali-hydrolysed nitrogen in the soil

Growth stages Samples Minimum Maximum Mean Standard deviation
Seedling 45 31.65 100.84 51 ± 2.39 12.57
Jointing 45 28.79 74.05 59.06 ± 1.21 8.83
Tasseling 45 44.33 95.61 73.12 ± 1.75 10.58
Filling 45 54.39 174.42 81.67 ± 3.28 22.86
Maturity 45 24.42 92.01 41.76 ± 2.12 10.26
Total 225 24.42 174.42 61.32 ± 1.35 20.16
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matrix. The batch module could generate numeri-
cal calculations such as mean, mean deviation, and 
variance on demand. To extract as much as possible 
the whole region, we selected the ROI according to 
Figure 1. 28.8000 (96.000 × 3) pixels were extracted 
for each sample. According to Eq. 4, the arithmetic 
mean value was taken as the spectral curve of the 
sample, which was the basic data set for subsequent 
data processing.

(3)

Where: a – long wheelbase departure of the ellipse; b – short 
wheelbase departure of the ellipse; x and y – coordinate 
parameters.

(4)

Where: A – arithmetic mean; n – number of pixels; i – 
number of samples.

Spectrum pretreatment. The structure of the soil 
is complex. Its spectrum is the effect of a compre-
hensive superposition of the reflectance of various 
components. The spectral information is often in-
terspersed with feedback from many factors, such as 
salinity and moisture. This information can lead to 
non-specificity in soil spectra, affecting the spectral 
data’s accuracy. In addition, the accuracy of predict-
ing soil property content using raw spectral data 
is often low due to the interference of instrument 
noise, spectral scattering and spectral covariance. 
Numerous studies have shown that the preprocess-
ing of spectral data can effectively suppress and 
eliminate instrumental noise in the spectral data 
and improve the performance of the established 
mode. Savitzky-Golay (S-G) has a good smoothing 
effect and can effectively remove high-frequency 
noise and interfering signals (Zimmermann and 
Kohler 2013, Zhang et al. 2021). Discrete wavelet 
transform (DWT) can separate high-frequency and 
low-frequency components, making the signal more 
distinct (Liu et al. 2021, Xu et al. 2021). Standard 
normal variate (SNV) allows the data to be unified 
with zero mean and unit variance across the feature 

space, eliminating possible scale differences between 
the data (Ye et al. 2020). Derivatives can show the 
slope, curvature, and other relevant characteristics of 
changes in the data, allowing a better understanding 
of the trends and dynamics of the data (Bhadra et al. 
2020). The Mapminmax algorithm can map the raw 
data to a specified range (usually 0 to 1 or –1 to 1) 
to ensure that the data are in a uniform range during 
modelling and analysis, thus improving the accuracy 
and reliability of data processing (Sun et al. 2017). 
These algorithms provide functions such as noise 
reduction, feature extraction, data standardisation 
and scale unification, which can improve the accu-
racy and reliability of data processing. Therefore, 
preprocessing the effective spectra using the S-G, 
DWT, SNV, Derivative, and Mapminmax can reduce 
the noise before modelling and effectively improve 
the model’s prediction accuracy. The results of the 
preprocessing are shown in Figure 2.

Extraction of feature band and model building. In 
spectral data analysis, spectrometers typically measure 
thousands of wavelength points. Some wavelengths 
may contain critical information relevant to the ob-
ject of study, while others may contain less informa-
tion or noise. By extracting the feature wavelengths, 
the dimensionality of the data can be reduced, and 
the efficiency of model training and prediction can 
be improved. The CARS algorithm is a widely used 
spectral variable selection technique in the field of 
spectral modelling (Xing et al. 2021, Li and Yang 
2023). It is a feature variable selection method that 
combines Monte Carlo sampling (MCS) with PLS 
model regression coefficients, mimicking the "sur-
vival of the fittest" principle in Darwinian theory. 
In the CARS algorithm, points with greater absolute 
weight of regression coefficients in the PLS model are 
retained as the new subsets each time through adap-
tive reweighted sampling (ARS). Remove points with 
lower weights. Then, the PLS model was constructed 
using the new subsets. After multiple calculations, 
we selected the wavelengths with the smallest root 
mean squared error of cross-validation (RMSECV) 
in the PLS model as the characteristic wavelengths.

Table 2. Statistics of the alkali-hydrolysed nitrogen (AHN) in the soil

Pigment Subset Number 
of samples

Range Mean Standard deviation
(mg/kg)

AHN
calibration set 169 24.42–174.42 61.86 ± 2.59 21.25
prediction set 56 28.71–87.63 59.69 ± 1.46 16.12

2 2
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Figure 1. The schematic diagram of this work. RMSECV – root mean squared error of cross validation; PLSR – 
partial least squares regression; BPNN – back propagation neural network; LSSVM – least squares support 
vector machine; Rp

2 – determination coefficient of the prediction set; RMSEP – root mean square error of the 
prediction set; RPD – ratio performance deviation

 

Re
fle

ct
an

ce
 (%

10
0)

0.42

0.40

0.38

0.36

0.34

0.32

0.30

0.28

0.26

0.24

 

Raw

 

Pre-processed
Sp

ec
tr

al
 p

re
pr

oc
ee

s 
by

 S
-G

 +
 D

W
T

 +
 S

N
V

 
+ 

D
er

iv
at

e 
+ 

M
ap

m
in

m
ax

1.0

0.5

0

–0.5

–1.0

Wavelength (nm) Wavelength (nm)
1000     1100    1200     1300    1400     1500    1600 1000     1100    1200     1300    1400     1500    1600

PLSR, BPNN, LSSVM

LSSVM works the best

Rp
2 = 0.8295

RMSEP = 2.95

RPD = 2.42

601

Plant, Soil and Environment, 69, 2023 (12): 596–607	 Original Paper

https://doi.org/10.17221/421/2023-PSE



In addition to reducing the dimensions of vari-
ables, the model selection substantially impacts 
its predictive accuracy. PLSR, as a classical linear 
regression model, has been widely used to estimate 
the content of the AHN. Because the relationship 
between AHN and spectral data is rarely linear in 
nature, linear models may encounter difficulties in 
modelling. Some studies have shown that nonlinear 
models are more suitable for dealing with complex 
nonlinear relationships between AHN and spectral 
data. For example, Xu et al. (2021) predicted the soil 
properties for intact soil cores in paddy fields. The 
result showed that BPNN and LSSVM provide bet-
ter performance than PLS. In this work, the CARS 
algorithm was combined with PLSR, BPNN, and 
LSSVM to construct CARS-PLS, CARS-BPNN, and 
CARS-LSSVM prediction models, respectively (Liu 
et al. 2017, 2019, Yang et al. 2020). The three mod-
els were run 100 times each. The predictive ability 
of the models was evaluated using the coefficient 
of determination of the correction (Rc

2) and the 
prediction (Rp

2), the root mean square error of the 
correction set (RMSEC), the root mean square er-
ror of the prediction set (RMSEP), and the relative 
analytical error (RPD). The values of Rc

2 and Rp
2 are 

between 0 and 1. For RPD, 1.5 < RPD < 2.0 indicates 
that the model can only make a rough estimate of 
the high or low content of the samples. 2.0 ≤ RPD < 
2.5 indicates that the model has a good predictive 
ability. And 2.5 ≤ RPD < 3.0 indicates that the model 
has very good predictive ability (Chen et al. 2022, Li 
et al. 2022a, 2023). Larger R2 and RPD and smaller 
RMSE indicate that the model predicts better.

RESULTS

Statistical analysis of the pattern of change of the 
AHN. The AHN of the basic soil fertility measured 
in the laboratory was 47.94 mg/kg. The contents of 
the AHN at the seedling, jointing, tasseling, filling 
and mature stages were 31.65–100.84, 28.79–74.05, 
44.33–95.61, 54.39–174.42 and 24.42–92.01 mg/kg, 
respectively. The content ranged from 24.42 to 
174.42 mg/kg during the whole stage. As the sampling 
sites were farmland areas, variations between AHN’s 
maximum and minimum values were substantial due 
to varying fertiliser application methods and crop-
ping systems in different plots. The average values 
were 51, 59.06, 73.12, 81.67 and 41.76 mg/kg at the 
seedling, jointing, tasseling, filling and mature stages, 

Figure 2. Preprocessed of spectral data. (A) Raw spectra for all the samples; (B) S-G preprocessed spectra for 
all the samples; (C) S-G + DWT preprocessed spectra for all the samples; (D) S-G + DWT + SNV preprocessed 
spectra for all the samples; (E) S-G + DWT + SNV + derivative preprocessed spectra for all the samples; (F) S-G + 
DWT + SNV + derivative + Mapminmax spectra for all the samples

 

0.42
0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24

(A)

 

0.44
0.42
0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24

 

(C)
0.36

0.34

0.32

0.30

0.28

0.26

 

(D) 2

1

0

–1

–2

–3
1000 1100  1200  1300 1400  1500  1600

Wavelength (nm)  

0.3

0.2

0.1

0

–0.1

–0.2
1000 1100  1200  1300 1400  1500  1600

Wavelength (nm)  

1

0.5

0

–0.5

–0.1

1000 1100  1200  1300 1400  1500  1600

Wavelength (nm)

(E) (F)

(B)

602

Original Paper	 Plant, Soil and Environment, 69, 2023 (12): 596–607

https://doi.org/10.17221/421/2023-PSE



respectively. In the whole period, the average value was 
61.32 mg/kg. The average value of AHN increased 
from the seedling period to the filling stage. The AHN 
refers to inorganic nitrogen, which consists of nitrate 
nitrogen, ammonium nitrogen and soluble organic ni-
trogen. The base fertiliser used organic fertiliser. After 
conversion, the organic nitrogen in the organic fertiliser 
was converted into inorganic nitrogen. At the mature 
stage, the average value of AHN decreased. As a large 
amount of nutrients were transferred to the plant for 
fruit growth at maturity, there was less AHN in the soil.

Sample partition and data preprocessing. This 
work aimed to construct a predictive model of the 
AHN in the soil. When developing a model, it is 
necessary to have calibration sets to create the model 
and conduct cross-validation. Prediction sets are 
then utilised to assess the predictive accuracy of the 
model. The sample set partitioning based on Joint X-Y 
Distance (SPXY) algorithm can optimise the search 
for samples and determine the most efficient way to 
partition them, with the objective of minimising the 
differences between the resulting subsets (Li et al. 
2022a). The SPXY algorithm was used to group all 
samples (N = 225) into two datasets, of which 169 
(75% of the total) and 56 (25% of the total) samples 
formed the correction and prediction datasets, re-
spectively. The data collected from the spectrom-
eter is noise-prone and requires preprocessing. We 
used S-G, DWT, SNV, Derivative and Mapminmax 
algorithms in this work. These algorithms were used 
to preprocess the collected data. We evaluated the 
efficiency and accuracy of each algorithm and com-
pared the results. The results indicated that utilising 
all five algorithms was the most effective method 
for preprocessing the spectral data. This approach 
yielded the most precise and efficient outcomes 
compared to the other preprocessing techniques. 
The characteristic bands were extracted using the 
CARS algorithm. Table 2 displays the statistical 
reference values for the AHN in the soil using the 
best pretreatment strategy. The similarity between 
the sample mean of the calibration and prediction 
indicates the rationality of the dataset partitioning.

Results of feature extraction by CARS. The MCS 
number was set to 100 times during the optimisation 
process. Figure 3 displays the optimisation process 
and the selected optimal wavelengths. This figure 
illustrates the variation in the number of sample 
variables, RMSECV, and regression coefficient paths 
in the subset with the increased number of MCS 
runs. As shown in the figure, increasing the number 

of MCS from 1 to 100 resulted in a decrease in the 
number of collected variables from 148 to 13. The 
RMSECV exhibited a trend of fluctuating from high 
to low and back to high again, which decreased to 
a minimum of 16.7205 mg/kg at 26 sampling intervals. 
This indicated that information variables unrelated 
to the AHN were eliminated during the variable se-
lection operation from 1 to 25. The RMSECV began 
to increase after 26 iterations. It was possible that 
important variables associated with AHN may have 
been removed. This could result in an increase in the 
RMSECV value and a degradation of model efficiency. 
Regression coefficient path change plots were marked 
using the vertical lines with asterisks. The optimal 
subset corresponded to the lowest RMSECV. Finally, 
the CARS model yielded 13 characteristic wave-
lengths: 978, 1 025, 1 073, 1 143, 1 223, 1 228, 1 233, 
1 337, 1 417, 1 497, 1 501, 1 506, and 1 643 nm. 
These results demonstrated that the CARS algorithm 
effectively minimised the number of band inputs and 
eliminated data redundancy.

Results of modelling. In this work, we utilised the 
CARS algorithm to extract feature bands, which were 
modelled separately by combining three algorithms: 
PLS, BPNN and LSSVM. The entire experiment uti-
lised 225 soil samples, with 169 for modelling and 56 
for validating the model. The selected characteristic 
bands, chosen by the CARS algorithm, were utilised 
with the PLSR, BPNN, and LSSVM model construc-
tion methods to accurately predict the AHN content. 
The final results of the complete experiment are 
shown in Table 3. According to the Table 3:
(1) The characteristic bands screened according to 

the CARS algorithm were entered as input vari-
ables into the constructed prediction model of 
the AHN. The modelling verification accuracy 
Rp

2 of the three models was ranked in descend-
ing order as LSSVM > PLS > BPNN. The LSSVM 
model exhibited the greatest predictive accuracy 
among the three established models. The valida-
tion accuracies of Rp

2, RMSEP and RPD were 
0.8295, 2.95 and 2.42, respectively. Both PLS and 
BPNN have lower predicting accuracy compared 
to the LSSVM. The prediction accuracy of the PLS 
model is in the middle position among the three 
models; the validation accuracies of Rp

2, RMSEP 
and RPD were 0.8165, 9.31 and 2.33, respectively. 
The prediction model built by BPNN had the 
lowest accuracy. Its model validation accuracies 
of Rp

2, RMSEP and RPD were 0.7626, 10.43 and 
2.05, respectively.
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(2) Comparing the results of these three models, it 
is clear that the modelling accuracy of the LSSVM 
is higher than that of the PLS and BPNN models. 
The RPD of the validation model utilising LSSVM 
is 2.42. The results indicate that the LSSVM model 
can approximate AHN’s content with great ac-

curacy. Furthermore, the model exhibits an ex-
ceptional estimation ability. The LSSVM was the 
best prediction model.

The CARS-LSSVM model was created with the 
intention of directly expressing the content of the 
AHN through prediction performance. The predicted 

Table 3. Prediction model of alkali-hydrolysed nitrogen (AHN)

Model Rc
2 RMSEC Rp

2 RMSEP RPD

FULL
PLSR 0.6584 15.99 0.7911 9.86 2.19
BPNN 0.4142 19.34 0.6345 12.46 1.65

LSSVM 0.7681 3.08 0.7974 2.67 2.22

CARS
PLSR 0.6585 15.99 0.8165 9.31 2.33
BPNN 0.4760 18.69 0.7626 10.43 2.05

LSSVM 0.7736 3.43 0.8295 2.95 2.42

FULL – full bands; CARS – bands after feature extraction by CARS algorithm; PLSR – partial least squares regression; 
BPNN – back propagation neural network; LSSVM – least squares support vector machine; Rc

2 – determination coef-
ficient of the correction set; RMSEC – root mean square error of the correction set; Rp

2 – determination coefficient of 
the prediction set; RMSEP – root mean square error of the prediction set; RPD – ratio performance deviation

 
 
 

Figure 3. Result of CARS running. Where: (A) refers to the change in the number of sample variables; (B) refers 
to the variation of root mean squared error of cross-validation (RMSECV), and (C) refers to the change of the 
regression coefficient path
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and true values of the calibration set (169 samples) 
and prediction set (56 samples) are shown in Figure 4.

DISCUSSION

In the past, scholars often relied on correlation 
analysis to examine the correlation between AHN 
and soil spectral reflectance, including its various 
mathematical transformations. The high correlation 
coefficient band was typically considered the sensi-
tive band. Then, more and more scholars adopted 
the CARS variable optimisation method to filter 
out the invalid or redundant variables from the full 
band and select the sensitive bands. In this work, 13 
sensitive bands were selected based on the CARS 
algorithm, representing 8.8% of the total number 
of bands. This greatly reduces the band information 
and solves the problem of the large number of bands 
and heavy computation in the prediction of the AHN. 
Therefore, the characteristic bands screened by the 
CARS algorithm coincide with the reflectance spectral 
response bands of the AHN that have been studied. 
There are also differences in the optimal subsets of 
different soil types selected through the CARS al-
gorithm, which selects characterising variables with 
instability. Vibrational bands of nitrite are detectable 
in the soil at the wavelength of 978 nm. At 1 025 nm, 
there is nitrite nitrogen in the soil. In the near-infrared 
range between 1 060 and 1 080 nm, certain organic 
compounds which contain carbon-nitrogen bonds 
display vibrational absorption peaks. There are vibra-
tions and transitions of nitrogen oxides within the 
1 070–1 080 nm range that manifest as absorption 
peaks. The stretching vibration of phosphate (PO4

3–) 

is observed at 1 143 nm. In the 1 140–1 150 nm 
range, phosphates exhibit absorption peaks along 
with some vibrational bands, especially phosphate 
ion (PO4

3–) or dihydrogen phosphate ion (HPO4
2–). 

The C-N stretching vibration and C-N-H bending 
vibration of organic nitrogen compounds in soil are 
present at wavelengths 1 223, 1 228, and 1 233 nm. 
The stretching vibration of nitrate was observed at 
1 337 nm. In the wavelength range between 1 330 
and 1 340 nm, there are some vibrational bands of 
absorption peaks for nitrate, particularly nitrate ion 
(NO3

–) or nitrate dihydrogen ion (HNO3
–). The C-H 

and N-H bending vibrations in soil organic nitro-
gen compounds occur at 1 417 nm. The inorganic 
nitrogen compounds in the soil exhibit notewor-
thy absorption properties at wavelengths of 1 497, 
1 502, and 1 506 nm. Resonance absorption occurs 
between the light in the specific wavelength range and 
molecules of inorganic nitrogen compounds in the soil. 
This phenomenon arises from the vibration patterns 
occurring within the molecules. The 1 495–1 510 nm 
bands fall within the wavelength range of this vibra-
tional absorption.

In this work, the soil samples of different fertility 
periods in the experimental field of millets were taken 
as the research object – hyperspectral imaging tech-
niques combined with machine learning algorithms 
for predictive modelling of the content of the AHN. 
The results of the work showed that the best model 
prediction results were obtained by using CARS-
LSSVM. The Rc

2, Rp
2, RMSEC, RMSEP and RPD 

are 0.7736, 3.43, 0.8295, 2.95 and 2.42, respectively. 
This indicates that the model constructed by LSSVM 
can be used to predict the content of the AHN. The 

Figure 4. Results of the calibration set and prediction set for the CARS-LSSVM (competitive adaptive reweighted 
sampling-least squares support vector machine) model of the content of alkali-hydrolysed nitrogen
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model has a good predictive ability. The LSSVM is 
the best estimator among the three machine learning 
algorithms. This result can provide data support for 
applying hyperspectral imaging technology to detect 
the content of the AHN in soil and provide a scientific 
basis for crop fertiliser management. Meanwhile, the 
prediction of the content of the AHN can also provide 
a theoretical reference for the rapid detection of other 
soil nutrients using hyperspectral imaging technol-
ogy. The future directions mainly include improving 
experimental protocols and procedures, using new 
instruments and techniques to achieve more com-
prehensive analysis, and learning more accurate and 
efficient data interpretation and processing methods. 
Continuous improvements will enhance the analytical 
capabilities of models. The combination of spectral 
technology and soil nutrient research can improve the 
accuracy and repeatability of data and provide a more 
comprehensive, efficient and accurate soil nitrogen 
assessment method. This will help to improve the 
accuracy and efficiency of soil nitrogen assessment.
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