
Lactic acid, the so-called "milk acid," is important 
in several biochemical processes. Agrochemicals, 
pharmaceuticals, cosmetics, and food industries 
can utilise lactic acid and its derivatives. The use 
of lactic acid extends beyond the laboratory, as it is 
a vital chemical commodity with broad applications 
in various industries such as food, textile, chemical, 
and pharmaceutical. Because of its inherent mois-
turising and antimicrobial properties, lactic acid 
has numerous applications in producing hygienic 
compounds (more effective antibacterial agents than 
malic, citric, propionic, and acetic acids) and personal 
care products, catering to health and beauty needs. 

This underscores the versatility of lactic acid and its 
significance in developing various consumer products 
(Coban and Demirci 2016). Market research predicts 
the global lactic acid market will reach 9.8 billion 
US dollars by 2025 (Acedos et al. 2022). Food and 
food-related applications use approximately 70% of 
the total lactic acid. Produced from renewable car-
bohydrates, lactic acid has the potential to become 
a substantial commodity-chemical intermediate, 
serving as a feedstock for biodegradable polymers, 
oxygenated chemicals, plant growth regulators, envi-
ronmentally friendly "green" solvents, and chemical 
intermediates (Jin et al. 2005, Kozlovskiy et al. 2017).
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Abstract: Lactic acid has gained considerable attention globally due to its multi-purpose application. Commercial 
lactic acid production uses the fungal species Rhizopus oryzae, which produces other organic acids. A crucial point 
of effective fungal organic acid production is matching the fungal strains’ requirements, where the carbon source 
plays a major role. The highest production rate is achieved when glucose is used as a carbon source. Alternatively, 
we can apply carbon-rich agricultural residues as carbon sources. Using agricultural waste for lactic acid production 
provides a sustainable and cost-effective feedstock but also helps to reduce greenhouse gas emissions by diverting 
waste from landfills and decreasing reliance on fossil fuels. Moreover, polylactic acid (PLA) produced from lactic 
acid monomers can occur in numerous agricultural applications. We should delve deeper into sustainable methods of 
using carbon residues to recycle waste, foster the circular economy, and advance sustainable agriculture. Therefore, 
there is a need for further research on the commercial use of agricultural and food industry wastes for lactic acid 
production.
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Organic acids are the natural products of many 
biological processes. For instance, plant roots exude 
organic acids, which lead to rhizosphere acidifica-
tion and mineral weathering, contribute to protons, 
and act as ligands for complex metals (Richter et al. 
2007, Paul et al. 2021). Microbial metabolism also 
produces organic acids, primarily through oxidative 
respiration or fermentation, using glucose as a car-
bon source (Kalayu 2019). The amounts and types of 
organic acids produced differ with different organ-
isms, and the solubilisation efficiency depends on 
the acid’s strength and nature. However, we can also 
use lignocellulosic agricultural residues consisting of 
complex carbohydrates to synthesise organic acids. 
In this case, first hydrolysis of these constituents to 
the simple sugars is necessary, followed by microbial 
fermentation, producing organic acid. Chemical 
processes like applying diluted acids hydrolyse the 
lignocellulosic materials (Eiteman and Ramalingam 
2015). On the other hand, amylolytic fungal cultures 
like Rhizopus oryzae (also known as Rhizopus arrhi-
zus) can produce lactic acid from various starch-based 
materials without saccharification, allowing for the 
application of the "simultaneous saccharification 
and fermentation" approach for the fermentation of 
starch waste materials (Jin et al. 2003).

Soil fungal hyphae can grow deeper into the soil 
than bacteria; soil fungi are important for breaking 
down inorganic phosphate because they make more 
acids than bacteria (Alori et al. 2017). Acids like glu-
conic, citric, lactic, 2-ketogluconic, 2-oxogluconic 
acid, tartaric, and acetic acid are just a few examples. 
Previous studies have shown that the fungal species 
R. oryzae can mainly produce two organic acids, 
L(+)-lactic acid and fumaric acid (Naude and Nicol 
2017, Zain et al. 2021). Therefore, researchers are 
conducting extensive studies on producing organic 
acids, ethanol, enzymes, and other commercially 
intriguing compounds by R. oryzae. The fungus 
R. oryzae offers a beneficial bio-based green organic 
acid production system as an alternative to chemical-
based industrial modes, which often cause chemical 
hazards and pollution. This demonstrates the unique 
potential of the commercial production of lactic acid.

Wee et al. (2006) published a comprehensive review 
that discussed the principles and mechanisms of lactic 
acid biosynthesis, described lactic acid-producing 
microorganisms, discussed substrates for lactic acid, 
and explored various applications of lactic acid. Among 
the potential applications, producing polylactic acid 
(PLA), a polymer with a wide range of future applica-

tions, received particular attention. According to Ali 
et al. (2023) and the International Union of Pure and 
Applied Chemistry, biological activity can degrade 
biodegradable plastics, macromolecular substances 
that reduce molecular weight. However, not all bio-
plastics degrade, and many require specific conditions, 
such as elevated temperature and enhanced microbial 
activity during composting, for their degradation to 
occur. Lactic acid monomers synthesise polylactic 
acid, a biodegradable polymer that can be an eco-
friendly replacement for petroleum-based plastics 
(Coban and Demirci 2016). PLA can be synthesised by 
reusing agricultural and food industry waste materi-
als. Swetha et al. (2023) recently stated and reviewed 
a link between the cost-effective production of PLA 
and the utilisation of agricultural and food waste for 
lactic acid production. However, PLA bioproduction 
still needs more progress to be comparable to PLA 
chemical production. Therefore, this review aims to 
present some suitable examples of agricultural and 
food waste use for lactic acid production, followed 
by the use of PLA for reasonable agricultural use, and 
identify potential knowledge gaps for further research.

RHIZOPUS ORYZAE, AN ORGANIC 
ACID-PRODUCING FUNGUS

R. oryzae is a ubiquitous filamentous fungus that 
thrives on decaying organic matrix. Taxonomically, it 
belongs to the class Phycomycetes, order Mucorales, 
family Mucoraceae, genus Rhizopus. The species 
R. oryzae is a saprophytic, heterothallic microfungus 
that requires a simple ecosystem to survive, is fast-
growing (1.6 mm per hour), and can grow vigorously 
between 25 °C and 45 °C. These fungi are typically 
found in soil, decaying fruit, vegetables, and animal 
faeces. These characteristics make them almost 
ubiquitous in nature, allowing the colonisation of 
almost all plant material. The U.S. Food and Drug 
Administration (FDA) classifies the species R. oryzae 
as GRAS (Generally Recognised As Safe), allowing 
its use for human consumption within the United 
States. However, the European Food Safety Agency 
(EFSA) does not consider filamentous fungi as QPS 
(Qualified Presumption of Safety). This makes people 
worry about safety and means that mycotoxins must 
be checked in each European product (Cantabrana 
et al. 2015, Herman et al. 2019).

R. oryzae can grow on various carbon sources 
such as glycerol, ethanol, sugars, fatty acids, and oils 
(Meussen et al. 2012, Dulf et al. 2018, Dhandapani 
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et al. 2021). The industry uses different Rhizopus 
species for submerged fermentation and biotrans-
formation to produce various products. There are 
enzymes (lipase, protease, glucoamylase, and cel-
lulolytic enzymes), organic acids (lactic acid, fuma-
ric acid, malic acid, itaconic acid, and succinic acid), 
steroids, terpenoids, alkaloids, phenolic compounds 
that can act as antioxidants, flavour compounds 
(d-limonene), pesticides, and herbicides (Uyar et al. 
2010, Ezeilo et al. 2020, Rivera et al. 2023). According 
to Londoño-Hernández et al. (2017), we can use R. 
oryzae to produce fermented foods like tempeh. R. 
oryzae produces more lactic acid than any other organic 
acid. It became famous for making much lactic acid 
even when no oxygen was present, making it a use-
ful organism for making this compound in factories. 
Bai et al. (2008) highlighted that lactic acid bacteria 
use an enriched medium to produce current indus-
trial lactic acid. However, the main benefits of using 
R. oryzae include its exclusive formation of the 
l-isomer and simple nutritional requirements. Scientists 
are also looking into how R. oryzae could be used in 
bioremediation because it can break down pollut-
ants like pentachlorophenol and polycyclic aromatic 
hydrocarbons (Ma et al. 2016, Ruiz-Lara et al. 2020).

Factors influencing the production of lactic 
acids by Rhizopus oryzae

The ability of R. oryzae to increase the production 
of organic acids mostly depends on things like the 
type of fungus, the availability of nutrients (carbon 
and nitrogen sources), the temperature, the pH, the 
time of incubation, the amount of oxygen present, 
and the culture conditions. Selection of a particular 
fungal strain is also an important factor. Several 
studies, such as Tay and Yang (2002), Thongchul et 
al. (2010), Göçeri et al. (2021), Zain et al. (2021), and 
Rodriguez-Torres et al. (2022), have used the strain 
R. oryzae NRRL 395. Researchers have proven that 
this strain can produce lactic acid from both com-
mercial and agricultural residual carbon sources, 
particularly emphasising the sustainable use of ag-
ricultural waste phytomass.

Temperature. Temperature is one of the most im-
portant physical parameters influencing the metabolic 
rate and amount of the end product (Maslova et al. 
2019). It plays an important role in the production 
of lactic acid by affecting the activity of enzymes 
(Dhandapani et al. 2021). Understanding the optimal 
temperature range for the growth and metabolism of 

different microorganisms is crucial in these fields, 
as it can help to optimise production processes and 
ensure the safety and quality of the final products. 
Previous research reports (Trakarnpaiboon et al. 
2017, Dhandapani et al. 2021, Zain et al. 2021) sug-
gested that temperature is a major factor impacting 
lactic acid fermentation. Bulut et al. (2009) studied 
seven different temperatures from 22.5 °C to 40 °C 
and found the optimum temperature of 32.5 °C for 
the maximum lactic acid production. However, lactic 
acid production was stable in the temperature range 
between 27.5 °C and 32.5 °C.

Dhandapani et al. (2021) observed a proportional 
increase in lactic acid production with increasing 
temperature, reaching a maximum yield of 21.3 g/L 
at 40 °C. Low temperatures favour saccharifica-
tion, while high temperatures favour fermentation 
(Dhandapani et al. 2021). The temperature of 40 °C 
could be considered the upper limit for saccharifi-
cation and the lower limit of the temperature range 
favouring fermentation (Dhandapani et al. 2021). 
Above 40 °C, we observed a sharp decline in acid 
production, which decreased by almost 15.4% when 
we maintained the operating temperature at 44 °C. 
The thermal inactivation of cellulase active sites 
causes a loss in activity, which explains the poor 
transformation (Dhandapani et al. 2021).

pH value. In the fermentation process of making 
lactic acid with fungal cells, fungi can handle high 
concentrations of lactic acid when the medium pH 
is lower than bacteria (Matsumoto and Furuta 2018). 
Based on the findings of Uyar et al. (2010), it seems 
that R. oryzae secretes significant amounts of lactic 
acid into the growth media, which leads to a decrease 
in pH. R. oryzae can also survive in a wide range of 
pH values, from 4.5 to 7.5 (Ibarruri and Hernández 
2018). These authors investigated mycelium formation 
under different pH conditions (3.4–5.6), observing 
higher mycelium formation under acidic pH values 
(3.4–4.5). Usually, NaOH or CaCO3 (Bai et al. 2008, 
Ren et al. 2014, Ma et al. 2020, Zain et al. 2021) are 
used to maintain the pH during fungus culturing.

The acid production caused the pH values in the 
reactor to drop. Soccol et al. (1994) observed a sig-
nificant decrease in pH from an initial value of 6.9 to 
a final value of 4.8 in a glass column reactor during 
lactic acid production. Furthermore, the pH value 
influences the proportion of acids the fungi pro-
duce. Roa Engel et al. (2011) showed that R. oryzae 
fumaric acid production decreased as the medium’s 
pH decreased from 5.0 to 2.4. Ren et al. (2014) and 
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Aziman et al. (2015) reported that at higher pH values 
(pH 6), more lactic acid production occurred. They 
explained that higher lactate production is due to 
reaction equilibrium breakdown and fungal mor-
phology change during fermentation at a higher pH.

Nutrient supply. Nitrogen supply substantially 
affects microbial growth and extracellular enzyme 
production (Di Lonardo et al. 2020, Zhao et al. 2021). 
Researchers recommend limited nitrogen levels in 
the culture medium for lactic acid production in 
conventional cultures of R. oryzae (Taherzadeh et 
al. 2003, Yu et al. 2007). For instance, Thongchul et 
al. (2010) confirmed that treating the cassava pulp 
hydrolysates with extra organic nitrogen improved 
cell growth and ethanol production while reducing 
lactic acid production. Several authors have said that 
ammonium sulphate and other inorganic nitrogen 
sources work better than ammonium nitrate, urea, 
yeast extract, peptone, and corn steep liquor for mak-
ing lactic acid by fungi (Yin et al. 1997, Jin et al. 2003, 
Ren et al. 2014). For Rhizopus sp., the best amount 
of ammonium sulphate to use in the culture medium 
to make lactic acid was between 1.0 and 4.0 g/L 
(Marták et al. 2003, Miura et al. 2003, Park et al. 2004, 
Maas et al. 2006, Taskin et al. 2013, Zain et al. 2021, 
Zaveri et al. 2022). Similarly, ammonium chloride 
(N concentration of 3.5 g/L) was confirmed as an 
effective nitrogen source for lactic acid production 
(Ren et al. 2014).

Phosphorus is one of the nutrients that affect 
R. oryzae’s biochemical processes. The types and 
concentrations of organic acids produced by rhizos-
pheric fungi vary according to the source of available 
phosphorus. Regarding general soil fungi, medium 
supplementation with calcium phosphate led to the 
highest proportion of gluconic acid production, 
whereas medium supplementation with the other 
phosphorus (P) sources (aluminium phosphate or 
phosphorite) caused the highest proportions of citric 
and valeric acid production (Scervino et al. 2010). 
Evidently, organic acid production can depend on 
the phosphorus forms applied.

UTILISATION OF AGRICULTURAL 
RESIDUES AS CARBON SOURCES 
FOR LACTIC ACID PRODUCTION

The type of carbon source plays a key role in produc-
ing organic acid by fungi (Dörsam et al. 2017). The 
fungi can get their carbon from commercial sources 
like glucose, xylose, sucrose, and starch, which break 

down quickly, or carbon-rich agricultural wastes like 
corn powder, rice powder, potato starch, paper sludge, 
and cassava pulp. Alternatively, carbon sources such 
as crude glycerol derived from the biodiesel industry 
can be utilised (Vodnar et al. 2013). Researchers 
have studied improving organic acid production by 
controlling various factors and medium components. 
Generally, R. oryzae converts glucose to lactic acid 
under aerobic conditions, whereas ethanol production 
increases under anaerobic conditions. Other reports 
of lactic acid production from starch and xylose ex-
ist. Given the cost-effective approach, agricultural 
residues, including solid agro-industrial wastes, are 
currently receiving attention for their potential to 
produce organic acids such as lactic acid and fuma-
ric acid (Thongchul et al. 2010, Göçeri et al. 2021).

Göçeri et al. (2021), Wang et al. (2009), and Maas 
et al. (2006) reported that glucose is the most fa-
vourable carbon source for lactic acid production by 
R. oryzae. In a mineral medium with glucose as the 
only carbon source, R. oryzae can make L(+)-lactic 
acid that is optically pure (Maas et al. 2006). Microbial 
strains can convert xylose (pentose sugar) into lactic 
acid under aerobic conditions through the pentose 
phosphate pathway. Interestingly, R. oryzae can make 
lactic acid from xylose instead of glucose, which most 
fermentation processes use (Zheng et al. 2016). In 
2006, Maas et al. (2006) did a study using xylose in 
commercial media to see how different strains of 
R. oryzae could make lactic acid. They got yields of 
470 to 710 g/L. The authors also examined the differ-
ences between glucose and xylose as carbon sources. 
They found that using xylose at levels higher than 
40 g/L stopped substrates from being used, leading 
to slower lactic acid production rates. Moreover, 
fermentation was 4.5 times longer when xylose was 
used as a carbon source (Maas et al. 2006).

Starch is a complex carbohydrate. It consists of two 
types of polysaccharides: amylose and amylopectin. 
R. oryzae can use starch as a carbon source for lactic 
acid production through fermentation. During fer-
mentation, the fungi break down starch into simpler 
sugars (such as glucose), which subsequently me-
tabolises into lactic acid (Akoetey and Morawicki 
2018). In a rotating bed fermenter, Tay and Yang 
(2002) immobilised R. oryzae cells in cotton cloth 
to produce lactic acid using corn starch and glucose 
as carbon sources. These authors obtained 100% 
(w/w) and 90% (w/w) lactic acid production using 
cornflour and glucose as substrates, respectively. 
However, many starch-containing materials remain 
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as waste from agricultural crop processing and the 
food industry despite their potential for reuse.

Waste materials have the potential to serve as 
valuable raw materials for the production of vari-
ous valuable products, including bioethanol, biogas, 
biodiesel, organic acids, enzymes, and microbial 
biomass. The literature has extensively discussed 
and reviewed these aspects (Mladenovic et al. 2016). 
According to these authors, wastes and by-products 
from the agriculture and food industries, such as 
whey, molasses, distillery stillage, waste starch, and 
lignocellulosic materials, are a good source of fer-
mentable sugars and many other substances of great 
importance for the growth of microorganisms, such 
as proteins, minerals, and vitamins. Using these 
wastes as feedstocks for cultivating bacteria and 
fungi could be considered a reasonable re-use of 
these materials, a way to dispose of them responsi-
bly, and a way to reduce production costs. Panesar 
and Kaur (2015) have already reviewed the potential 
utilisation of waste from agriculture and the food 
industry. Panesar and Kaur (2015) listed a multitude 
of potential fermentation sources, including wastes 
or by-products from agricultural product processing 
(fruit and vegetable peels/waste, corncob, etc.) and 
field residues left in an agricultural field after crop 
harvest (stalks, stems, leaves, seed pods). Additionally, 
lactic acid production from food processing waste 
is gaining attention now (Ibarruri and Hernandez 
2019, Salvanal et al. 2021).

Many microorganisms can use agricultural wastes 
and by-products as substrates to produce lactic acid. 
For instance, locally isolated bacteria can biosynthe-
sise lactic acid using waste-based substrates like sisal 
stems (Muruke et al. 2006). However, most published 
studies focus on the fungal ability to produce lactic 
acid, and R. oryzae belongs to the obvious fungal 
species. Ranjit and Srividya (2016) looked at how 
much biomass and lactic acid R. oryzae produced 
when it was grown on waste-based substrates like 
rice bran, wheat bran, rice starch water, tea waste, 
sugar cane bagasse, groundnut, and coconut oil cakes 
compared to when it was grown traditionally using 
starch. The sugar cane bagasse showed the highest 
lactic acid yield. Researchers Groff et al. (2022) and 
Bai et al. (2008) also documented the effective use 
of corncobs and grape stalks as the substrate for 
R. oryzae cultivation to generate lactic acid efficiently. 
Table 1 summarises several typical examples of waste 
utilisation for lactic acid production. Not only the 
different waste materials used but also the different 

reactor types and cultivation conditions contribute 
to the differences in the effectivity of lactic acid 
production. Therefore, the variability of the results 
presented in Table 1 is not only due to the substrate 
but also due to differing experimental parameters 
in the individual experiments.

Yu and Hang (1989) used different types of dried 
cereal biomass (barley, corn, oats, and rice) and cas-
sava powder as substrates to produce lactic acid by 
R. oryzae. The yield was greater in the case of rice, 
corn, and cassava powder compared to oats and 
barley as carbon sources. Acid production decreased 
from 10% to 15% as the substrate (rice) concentration 
increased. Using carrot processing solid waste as 
a substrate for R. oryzae led to a 55% yield of lactic 
acid (Garg and Hang 1995).

Thongchul et al. (2010) used hydrolysed cassava 
pulp by R. oryzae to produce lactic acid. However, 
the primary products from the hydrolysed cassava 
pulp, with less lactic acid production, were cell 
biomass and ethanol. R. oryzae has also used rice 
straw as a carbon source for lactic acid fermentation 
(Chen et al. 2018). However, R. oryzae only produced 
a small amount of lactic acid when it consumed the 
glucose in rice straw-derived hydrolysates (Chen et 
al. 2018). In this context, Zhang et al. (2016) identi-
fied carbohydrate and lignin degradation products 
in corn cob and stover hydrolysates (furans, weak 
acids, phenolic compounds, including syringaldehyde 
and trans-cinnamic acid) as potential inhibitors of 
lactic acid biosynthesis and recommended removing 
them from the hydrolysates. Chen et al. (2018) also 
confirmed increasing lactic acid production after 
removing polyphenols from the rice straw-derived 
hydrolysates. Recently, Göçeri et al. (2021) used 100% 
wheat wastewater as a substrate and found maximum 
lactic acid production (5.64 g/L).

Dhandapani et al. (2021) used paper sludge as 
a carbon source to produce lactic acid from R. ory-
zae. The authors found higher lactic acid yields 
at the substrate concentrations of 75 and 100 g/L 
and lower yields at 50 g/L. However, they observed 
a high initial production at a concentration of 100 g/L, 
followed by a slow and stable production over time. 
Dhandapani et al. (2021) presented an improvement 
in lactic acid production from paper sludge. These 
authors developed a simultaneous saccharification 
and fermentation method using an optimised cel-
lulase cocktail to maximise the lactic acid yield. 
Similarly, Jie and Zhang (2008) confirmed R. oryzae’s 
good ability to produce lactic acid from fibre waste 
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from the alkaline antraquinone (NaOH-AQ) pulp-
ing process (i.e., from the production of wood pulp 
using NaOH and antraquinone).

Furthermore, the incubation conditions will play 
an important role in effective lactic acid produc-
tion. An experiment about making fumaric acid by 
fermenting apple pomace ultrafiltration sludge and 
apple pomace by R. oryzae found that 72 h was the 
best time to let it grow (Das et al. 2015). Zain et al. 
(2021) and Aziman et al. (2015) also reported the 
highest lactic acid production after 72 h of incuba-
tion from the solid pineapple waste substrate. Ren et 
al. (2014) reported maximum lactic acid production 
occurring after 96 h, followed by a decrease of it. 
Bulut et al. (2009) monitored the rate of lactic acid 
production within a period of 245 h. The authors ob-
served the highest lactic acid concentration at 105 h, 
followed by a slight decrease over time.

Much recent research (Lian et al. 2020, Sadaf et 
al. 2021, Cao et al. 2022) focuses on agricultural 

waste phytomass (which has carbs, starch, cellulose, 
whey, and molasses) rather than commercial carbon 
sources for making lactic acid (Göçeri et al. 2021). 
Agricultural wastes are abundantly available and com-
mercially feasible. This is one of the best bio-based 
options for sustainable agricultural waste phytomass 
management to convert waste to valuable products 
through a carbon-neutral approach. On the one hand, 
this technology provides a zero-waste strategy; on 
the other, it represents a tactic for waste recycling. 
Generally, the various characteristics and properties 
of agricultural wastes hinder the identification of 
optimal conditions for lactic acid production. For 
the potential improvement of the lactic acid produc-
tion efficiency, various pre-treatments of the waste 
materials were tested, such as thermal or chemical 
measures, to facilitate the enzymes to access and 
decompose the cellulose (Ranjit and Srividya 2016).

Additionally, some fermentation procedures can 
produce valuable waste that could be reasonably 

Table 1. Examples of the utilisation of various wastes from agriculture and food industry for lactic acid produc-
tion regardless of the reactor type and incubation parameters

Substrate used Lactic acid production/conversion rate Reference
Oat flour 51.7 g/L Koutinas et al. (2007)
Sweet potato Scum 38.49 ± 0.51% (w/w) Ge et al. (2008)
Bagasse max. 28.45% Cui et al. (2018)
Inedible cassava starch and leaves 0.95 g/g Azmi et al. (2016)

Yam peel hydrolyzate 80.03% and 75.63% for the surface and 
submerged fermentation, respectively Ajala et al. (2021)

Wheat wastewater 5.804 g/L at the 1.0 × 106 spores/mL Göçeri et al. (2021)
Corncob hydrolysate 355 g lactic acid per kg corncobs Guo et al. (2010)
Wastewater from an industrial starch plant 450 g/kg (Rhizopus arrhizus) Huang et al. (2003)

Seafood processing waste 0.723 g/L/h (30 g/L of exogenous 
glucose added) Huang et al. (2007)

Potato, corn, wheat and pineapple waste 650–760 g/kg Jin et al. (2005)

Corncobs 299 g per kg dry matter of corncobs Ruengruglikit and Hang 
(2003)

Wheat straw powder 230 g/kg Saito et al. (2012)
Pretreated dairy manure 1 210 mg/L and 40.09% Sun et al. (2012)
Molasses and chicken feather protein hydrolysate 38.5 g/L Taskin et al. (2012)
Loquat kernel flour 45.4 g/L Taskin et al. (2013)

α-Amylase-treated liquefied cassava starch 83.7 g/L Trakarnpaiboon et al. 
(2018)

Potato peel waste 39 g/kg (optimised for ethanol 
as the major product) Uyar and Uyar (2023)

Zizania latifolia waste and cane molasses 129.47 g/L Yin et al. (2023)
Potato starch wastewater 850–920 g/kg Huang et al. (2005)

744

Review	 Plant, Soil and Environment, 70, 2024 (12): 739–750

https://doi.org/10.17221/416/2024-PSE



used. For instance, Ma et al. (2020) applied Sophora 
flavescens residues, frequently used in Chinese tra-
ditional medicine, as a carbon source for lactic acid 
production. As a result, the solid residues after fer-
mentation represent protein- and micronutrient-rich 
products potentially useful as animal feed additives. 
Researchers have extensively investigated the po-
tential use of fungal biomass, a by-product of lactic 
acid production, as an animal feed or feed additive 
(Ibarruri and Hernández 2019).

POLYLACTIC ACID AND ITS UTILISATION 
IN AGRICULTURE

Taib et al. (2023) talked about two main ways to 
make PLA from monomers: ring-opening polymerisa-
tion and polycondensation, both of which use metal 
or organic catalysts to speed up the process. PLA is 
a promising bio-based alternative to fossil-derived 
plastics in various applications in agriculture and 
the food industry, including food packages that have 
been proven to maintain nutritional values (Seglina 
et al. 2010), nonwoven vegetation blankets, hydrogels 
that can enhance soil retention capacity (Paswan et 
al. 2022), biodegradable plastic mulches (Hsieh et 
al. 2017, Cacciotti et al. 2018, Ju et al. 2021), and 
nanocomposites for the remediation of pesticide-
polluted wastewater (Behrooz et al. 2023). Recently, 
Serna-Abascal et al. (2022) reviewed more than 
50 examples of the potential use of biodegradable 
polymers in agriculture, predominantly as coatings 
for the controlled release of fertilisers, hydrogels for 
the improvement of soil retention capacity, foams, 
pellets for various uses, and so on.

Ali et al. (2023) recently looked at how biodegrad-
able PLA might be. They found that it depends on 
the polymer structure, the environment, ultraviolet 
radiation, temperature, pH, the community of mi-
crobes, and the activity of enzymes. Narancic et al. 
(2018) observed poor biodegradation ability in the 
aquatic environment. Researchers tested various 
additives, including polyethylene glycol and acetyl-
tri-n-butyl citrate, to enhance the hydrophilicity 
of PLA, observing effective biodegradation under 
composting conditions (Arrieta et al. 2014). Thus, 
PLA is a compostable bioplastic (Kale et al. 2007).

One possible agricultural application for PLA is 
the production of tomato yarns from bio-based poly-
mers. In this case, PLA showed physical-mechanical 
properties comparable to traditional plastics such as 
polyethylene and polyvinyl chloride (Râpa et al. 2011). 

Maraveas (2020) reviewed various agricultural ap-
plications of biodegradable polymers, including PLA 
as protective nets for shading, antihail, anti-insects, 
and windbreak purposes. Agriculture typically uses 
various outdoor sensors to measure environmental 
and climatic variables, such as environmental pol-
lution, weather conditions, or nutrient status. In 
this instance, researchers are testing 3-D printed 
radiation shields made of PLA to safeguard these 
sensors (Botero-Valencia et al. 2022).

Biodegradable polymers, such as PLA, are impor-
tant and reasonable for coating fertilisers to achieve 
their slow release in the soil (Devassine et al. 2002); 
researchers have been investigating and testing these 
applications for more than two decades. Tan et al. 
(2021) presented a novel method that involves fab-
ricating nanoscale slow-release urea fibre materials 
through coaxial electrospinning, which encapsu-
lates urea inside polylactic acid fibres. This material 
showed a slow release of urea up to 84 days. Yuan et 
al. (2023) introduced an interesting biodegradable 
composite hydrogel through chemical cross-linking 
synthesis using gelatine, chitosan, and PLA as raw 
materials. The solution immersion method can load 
urea into this material for use in the preparation of 
slow-release fertilisers.

The possible application of PLA to replace fossil-
derived plastics used as mulches with biodegradable 
plastics has been frequently investigated, where PLA 
plays an important role. However, a deeper investiga-
tion into the fate of PLA-based mulches in soils is 
necessary to understand their biodegradability and 
their interaction with the soil biota. The degradability 
of potentially biodegradable mulches, such as PLA, 
depends strongly on the climatic conditions (Li et 
al. 2014). Moreover, Ju et al. (2021) observed differ-
ent microbial compositions and community struc-
tures in the soil treated with biodegradable mulches 
compared to the classic polyethylene mulch. Ji et al. 
(2024) thoroughly tested composite materials, such as 
PLA hyperbranched cellulose nanocrystal composite 
mulch, to improve the properties of biodegradable 
mulch. Thompson et al. (2019) tested biostimulants 
such as biocatalyst products, microbial inoculants, 
and yard-waste compost extract.

However, biobased mulch films made from PLA could 
pose a risk to cultivated crops. For example, Reid et al. 
(2022) reported a reduction in soil nitrate, followed 
by a reduction in sweet corn yield in the treated low-
fertility soil. In this case, She et al. (2024) saw changes 
in the denitrification pathways in soils exposed to 
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different plastics. Using PLA made the dissimilatory 
nitrate reduction process stronger. They thought the 
high bioavailable C/NOx – ratio from biodegradable 
plastics breaking down would help the dissimilatory 
nitrate reduction to ammonium (DNRA) bacteria do 
their job better than the denitrifiers. These processes, 
in turn, facilitated the retention of ammonium in soils. 
Therefore, further research is needed to elucidate the 
potential adverse effect of the PLA in mulch films, 
and reasonable measures to mitigate these negative 
effects should be applied in such cases.

FUTURE PERSPECTIVES OF POLYLACTIC 
ACIDPRODUCTION AND APPLICATION

For future studies, we suggest investigating the 
economic and sustainable feasibility of organic acid 
production from various agricultural wastes and 
possibilities to scale up production. To meet the 
requirements of mass production, the waste phy-
tomass must be abundant, easily obtainable, and 
inexpensive. The rate of acid production (g/L/h) 
and the rate of carbon conversion to lactic acid (%) 
should be examined to understand how to move the 
process from the lab to the production of organic 
acids on a large scale.

According to Ju et al. (2021), the increased occur-
rence of pathogens and degradation microbial species 
in soils treated with PLA and other biodegradable 
polymer-based mulches compared to polyethylene 
poses a potential risk to crops and human health. 
Moreover, Zhang et al. (2018) documented that 
earthworms can ingest weathered biodegradable 
plastics, unlike traditional plastics like polyethylene. 
Therefore, further research is necessary to investigate 
the potential impact of PLA and other biodegradable 
plastics and the potential degradation by-products 
on edaphic organisms.

Traditional chemical additives can enhance the 
mechanical properties of biobased plastics but limit 
their sustainability (Maraveas 2020). Therefore, envi-
ronmentally friendly bioplastics based on PLA should 
either be free or contain a minimal amount of these 
additives to maintain a negligible environmental im-
pact. For instance, we can use spent coffee grounds 
extract as an antioxidant, replacing traditional an-
tioxidative agents for stabilising traditional plastics 
(Cacciotti et al. 2018). Similarly, França et al. (2019) 
suggest using the finely ground shells of Orbignya 
phalerata nuts as a low-cost filler with antioxidant 
activity for PLA-based mulch.

It is necessary to consider Swetha et al. (2023) 
statements concerning the possible environmental 
pollution due to PLA production from renewable 
sources. The production process requires fossil fuels 
to generate electricity, emits greenhouse gases, and 
has the potential to pollute water bodies, among other 
issues. Further research should consider these aspects 
to ensure a fully sustainable and environmentally 
friendly re-use of agricultural and food industry 
wastes and by-products.
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