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Abstract: The rhizosphere plays an important role in both farmland and urban areas, affecting water quantity and
quality during surface water infiltration by increasing the heterogeneity of the aeration zone. The extensive applica-
tion of antibiotics, their recalcitrance to degradation, and the resultant accumulation of antibiotics in soil-microbe-
-plant systems represent significant threats to the rhizosphere system, thereby threatening ecological stability and
environmental and human health. This review synthesises recent findings on the migration and transformation of
typical and common antibiotics within the rhizosphere. The main findings include that the absorption of antibiotics
by plants is influenced by their molecular weight (MW) and octanol-water partition coefficient (log K ), allowing
antibiotics to be divided into three classes: (1) antibiotics with high lipophilicity (log K > 2) are mostly adsorbed by
root lipids and rarely participate in the soil-plant transport process; (2) antibiotics with log K < 2 and high MWs
(MW > 700) are blocked outside the plant roots; and (3) antibiotics with log K <2 and low MWs (MW < 700) can
enter plants through the roots and are transported via transpiration flow in plants. Antibiotics with log K <1 are
more easily transported into plant tissues, including leaves. The rhizospheric microorganisms capable of participa-
ting in antibiotic migration and transformation are concentrated in Actinobacteria, Firmicutes, Proteobacteria, and
Bacteroidetes. The inhibitory effect of antibiotics on dehydrogenase, sucrase, urease, catalase, and alkaline phospha-
tase activities surpasses their promoting effect, reducing these enzyme activities by 6-35% on average. However,
the promoting effect of antibiotics on peroxidase, acidic phosphatase, and manganese peroxidase outweighs the
inhibitory effect, increasing enzyme activity by 2—-23%. Furthermore, it is essential to consider the effects of plant age
and root characteristics on antibiotic migration and transformation. The results of this review contribute to a better
understanding of the migration and transformation of antibiotics within the rhizosphere.

Keywords: woody plants; herbaceous plants; emerging pollutants; environmental contamination; soil and water
pollution; root exudates

Antibiotics, which are chemically derived from the =~ Santos 2011, Lietal. 2011, Xu et al. 2015). As a major
metabolites of plants, animals, or microorganisms, global pollutant, the widespread use of antibiotics
particularly bacteria, are increasingly prevalent in  has led to substantial environmental contamina-
soil-microbe-plant systems, posing significant en-  tion, with the annual global antibiotic production
vironmental and human health risks (Homem and exceeding 100 000 tons in 2009 (Nikaido et al. 2009,
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Cerqueira et al. 2020). In China alone, the 2020 anti-
biotic output reached 231 400 tons, primarily for use
in animal husbandry. Unfortunately, only 10-30% of
these antibiotics are metabolised by animals, with the
remainder entering ecosystems via excretion, leading
to significant soil and water pollution (Massé et al.
2014, Ngigi et al. 2019). Antibiotic residues, including
sulfonamides, macrolides, fluoroquinolones (FQs), and
tetracyclines (TCs), have been detected in various en-
vironments at concentrations ranging from nanograms
to micrograms per liter or kilogram (Chang et al. 2010,
Wang et al. 2014, Wu et al. 2022, Zhao et al. 2023).

Plants play important roles in both farmland and
urban areas. Chen et al. (2019) found that global
vegetation coverage has increased by 5% since 2000,
with China contributing up to 25% of this expansion
in green areas. Plants, particularly through their
rhizosphere interactions, can affect the water quan-
tity and quality during the surface water infiltration
process. The growth of plant roots can enhance the
heterogeneity of the aeration zone and affect the in-
filtration water quantity by altering the soil porosity
and increasing the soil preferential flow (Lu et al.
2020). According to Scanlan (2009), root growth
causes the division of macropores into smaller pores,
and root decay creates biological macropores and
root-induced small pores that are highly connected
and can increase soil moisture conductivity and
provide channels for preferential soil flow (Cheng
et al. 2011). Coarse root systems can increase the
number of soil macropores by up to 30% (Bodner et
al. 2014). Compared with unplanted compacted soil,
black oak and red maple root systems can penetrate
geotextiles and soil, boosting soil infiltration rates
by up to 27 times (Bartens et al. 2008). Allison and
Hughes (1983) found that rainwater in eucalyptus
forests could percolate up to 12 m along root canals,
whereas in wheat fields, precipitation only perco-
lated up to 2.5 m. In addition, plant metabolism,
root exudates, and rhizosphere microorganisms can
influence the infiltration water quality by affecting
the degradation and transformation of some pol-
lutants (Zhang et al. 2022). For example, Hoang et
al. (2012) studied the degradation of ciprofloxacin
(CIP) and norfloxacin (NOR) in a coastal wetland
system and found that both antibiotics were mainly
degraded through plant uptake, whereas photodeg-
radation rates were slower than plant uptake rates,
and microbial degradation was negligible.

Upon entering the soil, antibiotics undergo ad-
sorption, migration, and degradation, processes
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that are crucial to the ecological balance. The fate
of antibiotics is influenced by soil bonding, adsorp-
tion properties, and degradation rates, which in turn
depend on the soil pH, moisture, temperature, and
structure (Zhao et al. 2014, 2017, Li et al. 2019, Wang
2022). However, comprehensive investigations of
antibiotic degradation factors remain limited (Zhang
2022). In addition, enhancing the ability of plants
to absorb, migrate, and degrade antibiotics presents
aviable solution for reducing environmental antibiotic
levels. Plants not only directly affect the transport
of antibiotics in soil by taking up and accumulating
antibiotics but also rely on rhizosphere microor-
ganisms, enzymes, and root exudates that modify
antibiotic behaviour to influence antibiotic migration
(Norvill et al. 2017, Tang et al. 2017, Hu et al. 2019,
Chen et al. 2021a). The "rhizosphere effect” signifi-
cantly influences antibiotic dynamics, in addition to
altering soil characteristics and microbial diversity,
warranting further research into its mechanisms and
effects on antibiotic behaviour in soil-microbe-plant
systems (Wang et al. 2022, Xiao et al. 2023). These
findings highlight the urgent need to understand
the interactions and effects of antibiotics within
soil-microbe-plant systems. Therefore, this review
aimed to elucidate (1) the effect of the rhizosphere
on antibiotics migration and transformation and (2)
the effect of antibiotics on the rhizosphere micro-
organisms, enzymes and root exudates. This study
can guide future research and strategies to mitigate
environmental issues associated with antibiotics.

EFFECT OF DIRECT RHIZOSPHERE
UPTAKE ON ANTIBIOTIC MIGRATION
AND TRANSFORMATION

Plant uptake significantly influences the physical,
chemical, and biological responses of antibiotics
entering the soil, leading to their absorption, trans-
formation, or enrichment by vegetation (Zhang et al.
2017). The plant species itself is a crucial determinant
of this absorption (Tadi¢ et al. 2021). Plant uptake
efficiency is notably influenced by the transpiration
stream concentration factor, which encompasses fac-
tors such as the leaf number and length, along with
root characteristics. For example, previous reports
have demonstrated that oxytetracycline (OTC) shows
higher accumulation in radishes than in lettuce,
highlighting species-specific uptake (Youssef et al.
2020, Matamoros et al. 2022). Research indicates
that antibiotics exhibit a higher propensity to con-
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centrate in roots over stems and leaves, with the root
system acting as a conduit for transferring various
antibiotic classes to edible plant tissues (Tang 2017,
Christou et al. 2019). Consequently, plants with
extensive root systems and superior transport capa-
bilities display an enhanced potential for antibiotic
absorption. For example, solanaceous fruits, which
have robust root systems, tend to accumulate more
antibiotics than leafy vegetables. The accumulation
factor (AF), a metric used to compare the ability of
different vegetables to accumulate antibiotics from
the soil, has been found to range from 6.20 to 8.44
for solanaceous fruits and from 1.47 to 1.58 for leafy
vegetables. Comparatively, Cyperus alternifolius L.,
with fibril roots, was reported to remove 44.70% of
sulfamethoxazole (SMX), outperforming the rhi-
zomatic Gladiolus hybrids, which removed 40.38%
(Liet al. 2014, Hu et al. 2022).
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The octanol-water partition coefficient (log K_ )
describes the partitioning of organic compounds be-
tween water and octanol and indicates the antibiotic
adsorption affinity onto solids (Kimmerer 2008).
The uptake of antibiotics by plant roots is influ-
enced by their molecular weight (MW) and log K
(Boonsaner and Hawker 2010, Herklotz et al. 2010),
and the detailed mechanism and data are shown in
Figure 1 and Table 1. Antibiotics dissolved in soil
pore water are introduced into the plant system from
a water source. According to their MW and log K,
values, antibiotics can be divided into three classes:
(1) antibiotics with high lipophilicity (log K > 2)
are mostly adsorbed by root lipids and rarely par-
ticipate in the transport process; (2) antibiotics with
log K <2andahigh MW (MW > 700) are blocked
outside the plant roots; and (3) antibiotics with log
K, <2andalow MW (MW < 700) enter the plant

Enter the plant through the roots and
are transported via transpiration flow
1

-Roots

- Soil Particle
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Figure 1. Mechanism of plant uptake of antibiotics with different molecular weights (MWs) and octanol-water

partition coefficients (log K_ )
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through the roots and are transported via transpi-
ration flow. Antibiotics with log K < 1 are more
easily transported to plant tissues, such as stems,
leaves, and fruits.

Yan et al. (2020) concluded that CIP (log K_ - =
0.28) is easily absorbed and accumulated by the
roots of the large plant Eichhornia crassipes, with
approximately 1 645.2 ug/g of CIP absorbed by the
roots when the initial concentration of CIP in water
was 1 000 ug/L. Eichhornia crassipes (Mart.) Solms
has the ability to transport CIP from the roots to the
above-ground portion of the plant with an average
leaf bioconcentration factor = 0.34 and a transfer
factor (TF) of up to 23.34. After prolonged irrigation
with wastewater containing antibiotics, SMX (log
K, .smx = 0-89) and trimethoprim (TMP, log K 1\ /p =
0.91) exhibited high bioconcentration capacities in
tomato fruits, with bioconcentration factor values
for SMX and TMP ranging from 0.471 to 5.419 and
from 0.178 to 6.441, respectively (Christou et al.
2017). The uptake of ofloxacin (OFL, log K__ r =
-0.39) has been reported in several plant tissues
(Marsoni et al. 2014). Neither Allium cepa L. nor
Brassica oleracea L. var. capitata can absorb the large
and lipophilic antibiotic tylosin (TYL, log K_ 1y, =
3.50). However, these plants can take up nearly 50%
of the smaller hydrophilic antibiotic chlortetracycline
(CTC,log K 1¢ = —0.62) (Kumar et al. 2005). Both
CTC and sulfadiazine (SFD, log K_ <., = -0.09) can
be transferred from the roots of growing wheat to
its stems and leaves. The initial CTC of 1.1 mg/kg
DW absorbed by the roots and the initial absorption
of SFD of 0.5 mg/kg DW decreased to 0.1 mg/kg
DW and below the detection limit at maturity, re-
spectively (Grote et al. 2007).

Low-MW antibiotics withlog K <1 show stronger
mobility through the xylem via transpiration flow
in various tissues of the plant body than high-MW
antibiotics with log K > 1. Tetracycline (TC, log
K, rc=-119),NOR (log K\ =—1.03), and chlo-
ramphenicol (CAP, logK__ ., =0.92) accumulate the
most in the fruit, followed by the stems and leaves,
with the least distribution in the roots (Pan and Chu
2017a). The high MW of macrolides prevents their
uptake by many plants. The lipophilic TYL, erythro-

mycin (ERY, log K rry = 3.06), roxithromycin (RTM,

log K rrm = 2-75) and the azithromycin (AZI, log
K, az1 = 4.00) are absorbed by the roots in trace

amounts (Jones-Lepp et al. 2010).
The concentration of enrofloxacin (ENR,log K -\ r =
1.10) was previously found to be higher on the
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outer layer of carrot roots (8.5 pg/kg) than inside
the roots (2.8 pg/kg). In comparison, the concen-
tration of OTC (log K ,rc = —1.22), which has
a MW similar to that of ENR, was higher inside the
roots (Boxall et al. 2006). NOR and CIP both have
MWs of more than 300 g/mol (Li et al. 2014), but
NOR (vegetable detection frequency = 100%) shows
a stronger transfer capacity in soil-vegetable systems
than CIP (vegetable detection frequency = 25%). Yu et
al. (2022) measured the maximum uptake rate (V__ )
of FQs in pak choi roots using the Michaelis-Menten
equation and determined that V.. (142.34 mg/
kg/h) >V = op (102.12 mg/kg/h) >V __
(50.86 mg/kg/h); that is, for antibiotics with similar
MWs, the smaller the log K_ , the higher the root
absorption rate.

In addition to herbaceous plants, woody plants
have the ability to absorb antibiotics and exhibit
a higher uptake potential. This was confirmed through
quantitative analysis by Sun et al. (2017), who showed
that Rhizophora stylosa Griff. and Avicennia ma-
rina (Forssk.) Vierh. could accumulate 366.6 pg/kg
and 1 306.3 pg/kg of CIP through root uptake to
achieve an environmental cleanup of TF ., 1.4 and 3.5,
respectively. Direct rhizosphere absorption by woody
plants is the main factor interfering with antibiotic
migration and transformation. For example, the FQ
content in the rhizosphere soil of Aegiceras cornicu-
latum (L.) Blanco and Kandelia candel (L.) Druce was
found to be approximately twice the FQ content in
non-rhizosphere soil. In other words, the rhizosphere
effect promoted the migration of antibiotics to the
roots of woody plants for absorption and degrada-
tion (Ren et al. 2017). In addition, relative to the
total antibiotic mass accumulated in plant compart-
ments (1.66 mg), the enrichment of antibiotics in the
various zones of peach trees (Amygdalus persica L.)
was found to be as follows: root (percentage of an-
tibiotic accumulation = 0.031%) > stem (0.021%) >
leaf (0.013%) > shoot (0.007%) (Zhao et al. 2020).

In conclusion, multiple plant organs, mainly the
roots, can absorb different kinds of antibiotics. The
uptake capacity of plants varies with the plant spe-
cies and the type of antibiotics. Plants with well-
developed roots, stems, and branches exhibit greater
uptake potential for antibiotic treatment because
they have a larger contact area, which enhances
their ability to reduce antibiotic contamination in
soil. However, most of the plants used in current
antibiotic translocation studies are shallow-rooted
herbaceous plants instead of woody plants with well-
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developed root systems and longer root lengths. Thus,
specific scientific questions, such as the relationship
between antibiotic migration and transformation in
the rhizosphere system of woody plants as well as
soil, roots, and root microorganisms, remain to be
addressed.

MECHANISM OF INTERACTION BETWEEN
RHIZOSPHERE MICROORGANISMS,
ENZYMES, AND ANTIBIOTICS

Influence of rhizosphere microorganisms
and enzymes on antibiotics

Changes in the rhizosphere microbial community
and associated rhizosphere enzymes are the key to
understanding antibiotic migration and transfor-
mation (Kumar and Dubey 2020, Chen et al. 2023).
The interaction between rhizosphere enzymes and
antibiotics is presented in Table 2. Antibiotics can
undergo biosorption, bioaccumulation, biodegrada-
tion, or biotransformation through the action of soil
and rhizosphere microorganisms, which have the
ability to absorb, use, and transform antibiotics in
the soil environment (Huang et al. 2021). The deg-
radation/transformation of antibiotics by selected
rhizosphere microorganisms is shown in Table 3.

Existing studies have shown that the species capable
of participating in the migration and transformation
of antibiotics are concentrated in Actinobacteria,
Firmicutes, Proteobacteria, and Bacteroidetes. Most
rhizosphere microorganisms are important for plant
growth and development (Zhan et al. 2005). The
effect of rhizosphere microorganisms on antibiot-
ics is displayed in Figure 2. Beneficial rhizosphere
microorganisms produce metabolites or secretions,
including antibiotics that promote plant colonisation.
For example, Streptomyces species distributed in the
rhizosphere of Cupressus gigantean W.C.Cheng &
L.K.Fu and Myrica rubra Siebold & Zucc. (Wang
et al. 2023a,b) prevent the growth of pathogens by
secreting a variety of antibiotics, such as strepto-
mycin and TC, in the root system of plants (Kelly
and Wolfson 2020).

Rhizosphere microorganisms can selectively de-
grade antibiotics through intracellular and extracel-
lular enzymes or other metabolites. Mycobacterium
spp., a sub-set of Actinobacteria, can grow and
propagate on the surface and rhizosphere of plants.
Intracellular N-acetyltransferase and nitrate reductase
from Mycobacterium spp. biodegrade quinolone an-

tibiotics through acetylation and nitrification (Adjei
et al. 2006, 2007). Chen et al. (2021b) found that
rhizosphere biodegradation was dominant (90.2—
92.2%) in the wetland phytoremediation pathway
of sulfonamide contamination. Some strains of the
Bacillus genus in the phylum Firmicutes are wide-
spread in the rhizosphere of crops and promote plant
growth (Yang et al. 2023). Bacillus can biodegrade
up to 83.58% of chlortetracycline by breaking amino
and hydrogen groups (Zhang and Wang 2022) and
can effectively degrade 66.2% of OFL through the
oxidation and hydroxylation of the piperazine ring
(Zhang et al. 2022). Pseudomonas, Thauera, Azoarcus,
and Flavobacterium (sub-sets of Proteobacteria) are
all highly effective antibiotic-degrading bacteria.
Pseudomonas sp. F2 was shown to degrade 100% of
5 pg/L OFL through defluorination and dealkylation
(Lietal. 2021b). A sludge system harboring the latter
three bacterial genera demonstrated a removal ef-
ficiency of 95% for SFD and 70% for ERY (Fu 2020).
The cytochrome P450 complex in various fungi can
degrade 85-100% of FQs and sulfonamides (Garcia-
Galédn et al. 2011, Gao et al. 2018).

Plants with more complex rhizosphere systems
have more abundant microbial community structures
that can degrade antibiotics. For large, rooted woody
plants, antibiotic degradation by microorganisms
exceeds 90% (Hoang et al. 2013). Increasing antibi-
otic concentrations enhance the overall tolerance
and degradation efficiency of these rhizosphere
antibiotic-degrading microorganisms, producing
a negative feedback effect and weakening the toxic-
ity of antibiotics. As the level of CIP contamination
increased, the proportion of Alphaproteobacteria and
Betaproteobacteria in the rhizosphere of high and
low CIP-accumulating cultivars of Brassica camp-
estris L. increased from 9.8-15.3% to 16.3—-18.4%
(Alphaproteobacteria) and from 5.3-15.3% to 7.4—
13.1% (Betaproteobacteria) (Huang et al. 2017). Some
rhizosphere microorganisms affect the migration and
transformation of antibiotics through bioadsorption
or bioenrichment. Biological adsorption or bioenrich-
ment methods proceed as follows: first, lipophilic
antibiotics are persistent and (log K, > 2) overcome
the biofilm restriction of rhizosphere microorgan-
isms through hydrophobic distribution between
aliphatic and aromatic groups and lipid-soluble cell
membranes. Second, the electrostatic interaction
between charged groups and soil, hydrogen bonding
between molecular structures, surface complexation,
and the ion exchange of antibiotics affect the adsorp-
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tion process of rhizosphere microorganisms (Wang
and Zhou 2012). For example, Tan et al. (2021) found
that Sphingobacterium changzhouense TC931 could
remove nearly 90% of TCs through the combined
effect of biological adsorption and biological and
abiotic degradation.

Rhizosphere microorganisms secrete a signifi-
cant number of enzymes. The effect of rhizosphere
enzymes on antibiotics is illustrated in Figure 2.
Rhizosphere enzymes can degrade different classes
of antibiotics to form both inactive and more active
metabolites through catalysis. This process involves
breaking the molecular structure of antibiotics, in-
troducing new structures, and reducing or enhancing
their inhibitory effect on rhizosphere microorgan-
isms. For example, p-lactamase and urease produced
by Pseudomonas aeruginosa can destroy the struc-
ture of B-lactams and promote rhizosphere micro-
organism tolerance. Laccase can destroy glycoside
and ester bonds in antibiotic molecules or oxidize
and acylate antibiotic molecules to degrade anti-
biotics and reduce their toxicity (Song et al. 2021,
Han et al. 2022). The alkaline laccase from Bacillus
amyloliquefaciens degrades 70—90% of FQs contain-
ing benzene ring structures into smaller molecules
through hydroxylation reactions. This laccase is
a highly efficient enzyme for degrading FQs (Blanquez
etal. 2016) that is found in the rhizosphere soil of the
coniferous woody plant Taxus (Song 2015). Laccase
from the white rot fungus Trametes versicolor (L.: Fr.)
Lloyd was shown to degrade 16% of TC, 48% of CTC,
34% of doxycycline, and 14% of OTC by oxidizing
phenolic hydroxyl groups in the molecular structure
of TCs (Suda et al. 2012). Peroxidase in the rhizos-
phere soil catalyses the conversion of benzofurans
and other structures in TCs into easily decomposable
products containing hydroxyl or carboxyl groups,
effectively catalysing the degradation of 72.5-84.3%
of TCs (Wen et al. 2010, Yao and Qing 2022). Some
rhizosphere enzymes alter the chemical structure
of antibiotic molecules to change properties such as
water solubility. Dehydrogenase (DHA) can catalyse
the oxidation of aliphatic groups in antibiotic mol-
ecules to reduce the water solubility of antibiotics.
In addition, DHA may enhance the water solubility
of antibiotics by introducing or exposing hydrophilic
groups (Wei 2020). Rhizosphere enzymes can also
regulate the migration and transformation of antibi-
otics by influencing the growth and reproduction of
microorganisms or through synergistic interactions.
Microorganisms use sucrase in vivo to hydrolyse
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Figure 2. Action mechanism of rhizosphere microorganisms and enzymes on antibiotics

sucrose secreted by plant roots and obtain carbon
sources. Rhizosphere microorganisms whose growth
and reproduction are promoted proximally influence
the migration and transformation of antibiotics.
The ammonia-oxidizing bacteria Nitrosomonas and
Nitrospiracea secrete ammonia monooxygenase
(AMO), which degrades nearly 86% of antibiotics
by co-metabolizing B-lactam cycles in the molecular
structure, thus reducing the interference effect of an-
tibiotics on ammonia-oxidizing bacteria (Kassotakie
et al. 2016, Wang et al. 2019).

Effects of antibiotics on rhizosphere
microorganisms and enzymes

Antibiotics, in turn, affect the composition and
properties of rhizosphere microorganisms and en-
zymes. The mechanism is illustrated in Figure 3.
Antibiotics alter the growth and metabolism of rhizos-
phere microorganisms and the structure of microflora
(Liuetal. 2012, Li et al. 2023). Antibiotics may reduce
microbial activity through several mechanisms, in-
cluding interfering with protein function; inhibiting
nucleic acid synthesis; altering the microbial internal
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environment, cell wall, and cell membrane structure;
and disrupting microbial energy metabolism and the
material exchange system (Yang et al. 2022). Some
rhizosphere microorganisms adapt to antibiotic
stress, allowing them to become dominant strains
that participate in the degradation of antibiotics
and promote growth in certain microorganisms
(Cerqueira et al. 2020). Furthermore, antibiotics
can affect plant or microbial enzymes, resulting in
the promotion or inhibition of certain enzymatic
activities, such as those that occur in the root domain
(Zhou et al. 2022).

Rhizosphere microorganisms are highly sensitive
to antibiotics, even at low concentrations (Yang
et al. 2010). Some antibiotics inhibit the structure
and function of the cell wall and cell membrane of
rhizosphere microorganisms. For example, penicillin,
which is in the f-lactam family, binds to the penicillin
enzyme in the cell wall synthesis pathway, thereby
inhibiting cell wall synthesis (Herren et al. 2022).
Penicillin and streptomycin (aminoglycosides) can
bind to specific receptors on the cell membrane and
change its permeability (Kim et al. 2023, Wang and
Blount 2023). TCs can block cell wall formation by
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inhibiting methyl methacrylate, which is required
for cell wall synthesis (Ledger and Edwards 2023).
ERY destroys the integrity of the cell wall, causing
cell death. Both TC and ERY can interfere with ion
channels on the cell membrane, promoting changes
in membrane permeability and affecting rhizosphere
microbial diversity (Liu et al. 2011). Some antibiotics
harm rhizosphere microorganisms by hindering the
synthesis and expression of nucleic acids and pro-
teins. Macrolides can suppress cell protein synthesis
and subsequently affect cell proliferation (Fu 2020).
Streptomycin and OTC affect protein synthesis by
interfering with ribosome function (Tang and Tang
2009). CAP inhibits the formation of tRNA, which
blocks the protein synthesis process.

Additionally, antibiotics can change the structure of
the rhizosphere microbial community by interfering
with microbial energy metabolism and the material
exchange system. Huang et al. (2017) found that with
the increase in the CIP concentration, the commu-
nity diversity index of Brassica campestris L. with
high (CT) and low (SJ) CIP accumulation decreased
from 3.38 to 3 and from 3.37 to 3.02, respectively;
the richness index (number of bands) decreased

a. Disrupt the structure and
function of the cell wall

from 29 to 22 and from 27 to 24, respectively; and
the evenness index decreased from 0.90 to 0.84 and
from 0.91 to 0.85, respectively. Liu et al. (2022) found
that high SMX concentrations resulted in reduced
microbial activity, the inability of microorganisms
to adapt to antibiotic stress, and declines in biomass
and diversity. The degree of tolerance and response
of rhizosphere microorganisms to antibiotics varies
depending on the type of antibiotic, content, exposure
time, and microbial type. For example, Zhang et al.
(2009) examined the sensitivity of six different wheat
rhizosphere strains to aureomycin and penicillin at
different concentrations. The tolerance concentration
of Actinomyces F1 to aureomycin was 1 000 pg/L,
while 500 pg/L CTC could inhibit the growth of
Actinomyces F2. Moreover, the relative abundance
of Proteobacteria decreased at a TC concentration
of 300 pg/L, but the relative abundance increased at
TC concentrations ranging from 300 to 30 000 pg/L
(Guo et al. 2020).

The activity of some rhizosphere enzymes is in-
hibited or promoted under antibiotic stress, thereby
affecting the growth conditions of microorganisms.
Huang et al. (2017) found that CIP contamination
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Figure 3. Mechanism and effect of antibiotics on rhizosphere microorganisms and enzymes (some of the data

in the figure are adopted from Table 3)
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levels were negatively correlated with catalase (cor-
relation coefficient = —-0.474) and urease activity (cor-
relation coefficient = —0.740) in the rhizosphere of
high and low CIP-accumulating cultivars of Brassica
campestris L. Penicillin, TC, ERY, and streptomycin
can affect the function and expression of urease,
hinder its decomposition into ammonia and carbon
dioxide, and suppress the growth and metabolism
of rhizosphere microorganisms. Low concentra-
tions of antibiotics can enhance the activity of plant
antioxidant enzymes, thereby removing reactive
oxygen species to protect the growth of plants and
rhizosphere microorganisms (Wang et al. 2021b).
However, studies have shown that the inhibitory ef-
fect of antibiotics on the activities of most enzymes
surpasses the promoting effect (Figure 3), such as
those on DHA, sucrase, urease, catalase, and alka-
line phosphatase, which exhibit average decreases
in activity of 6-35% when exposed to antibiotics.
In contrast, the promoting effect of antibiotics on
peroxidase, acidic phosphatase, and manganese per-
oxidase outweighs the inhibitory effect, resulting
in average increases of enzyme activity of 2—-23%.
Antibiotics can affect the normal function of rhizo-
sphere enzymes by directly binding with them or
binding with their substrates or ligands. During
acylation, TCs bind to sulfhydryl groups in urease
molecular structures to form stable complexes, dis-
rupting urease function (Schnappinger and Hillen
1996). OTC binds to specific parts of various rhizo-
sphere enzymes. A previous study found that the
activity of urease decreased by 0.1-50%, the activity
of sucrase decreased by 0.1-47%, phosphatase activity
decreased by 0.1-80%, and catalase activity decreased
by 27-46% under OTC (100 mg/kg) exposure (Yao et
al. 2010). Additionally, the promoting or inhibitory
effect of antibiotics on rhizosphere microorganisms
can also lead to changes in the activity, functions, or
structures of specific enzymes. TC interferes with
the function of ribosomes, hindering the function of
sucrase, while ERY and streptomycin can promote
the synthesis and activity of sucrase. Yi et al. (2017)
found that CIP inhibited the activity of nitrite re-
ductase and polyphosphate kinase by blocking the
conversion of intracellular polyhydroxyalkanoates
and glycogen by rhizosphere microorganisms.
Different types of plants, enzymes, and antibiot-
ics; antibiotic contents; and soil regions all affect
enzymatic responses to antibiotics. For example, low
concentrations of SMX (15 mg/kg) were found to
increase the activity of DHA by 4—-30% in rhizosphere
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zones, and DHA activity decreased by 6-40% in bulk
soil zones, but high concentrations (45 mg/kg) of SMX
decreased DHA activity by 10-90% in all regions.
However, under sulfamerazine treatment, the activ-
ity of DHA at low and high concentrations near the
rhizosphere zones increased by 1-50% overall (Li et
al. 2021a). Wang et al. (2021a) concluded that catalase
activity in a soil-lettuce system initially decreased by
10-15% with the increase in the OTC concentration
from 0 to 50 mg/kg before significantly increasing
by 10-20% (from 50 to 450 mg/kg). Catalase activ-
ity was reduced by 20-30% at OTC concentrations
of 450-1 350 mg/kg. Zhang et al. (2012) confirmed
that various soil enzyme activities in the rhizosphere
region of wheat cultivars were inhibited by OTC,
with soil alkaline phosphatase activity decreasing
by 31.7-44.3%. However, there was no significant
relationship between acid phosphatase, DHA activ-
ity, and the OTC dose effect.

Studies have shown that rhizosphere microorgan-
isms and related enzymes play key roles in pollutant
treatment, including antibiotic degradation, pure
bacteria and enzyme degradation, and multi-enzyme
synergism (Liu et al. 2020). The roles of rhizosphere
microorganisms and enzymes in antibiotic migra-
tion and transformation can be studied through the
combination of modern high-throughput sequenc-
ing technology to analyze the microbial community
structure, next—generation sequencing, bioinfor-
matics methods, and microbiome techniques with
enzyme assay methods. Rhizosphere microorganisms
and enzymes not only participate in the antibiotic
degradation process but are also closely linked to
rhizosphere plant and soil interactions and func-
tions; this is a phenomenon that needs further study.

BEHAVIOUR OF RHIZOSPHERE EXUDATES
DURING ANTIBIOTIC MIGRATION AND
TRANSFORMATION

Influence of rhizosphere exudates on antibiotics

Rhizosphere exudates play important roles in driv-
ing antibiotic migration and transformation (Zhalnina
et al. 2018). Exudates can regulate the activity of
antibiotics by binding to antibiotics or changing the
target. For example, the combination of phenolic acid
coumarin with antibiotics reduced the minimum
inhibitory concentrations (MICs) of TC and NOR
from 64 to 32 pg/mL and from 128 to 16 pg/mL,
respectively (De Araujo et al. 2016). Phellinus baumii
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ethyl acetate extract (Hong et al. 2016) and cinnamal-
dehyde (Dhara and Tripathi 2020) changed the target
of B-lactam and FQs. As a result, microorganisms
were inhibited from producing targets that hindered
the binding of antibiotics to the cell wall, and the
MIC values of f-lactam and CIP against bacterial
targets were reduced by 8 to 128 folds and by 2 to
1 024 folds, respectively, enhancing the antibacterial
activity of antibiotics. Lastly, rhizosphere exudates
can inhibit degradation or produce less toxic or
harmless byproducts in the soil environment. For
example, Gujarathi et al. (2005) demonstrated that
the process of OTC removal by Helianthus annuus
was dependent on active oxide rhizosphere exudates.
Moreover, phytoactive compounds such as querce-
tin (Kim et al. 2018) and carvacrol (Miladi et al.
2016) inhibit antibiotic degradation by suppressing
B-lactamase activity.

Rhizosphere exudates affect microbial activity and
abundance (Wu et al. 2017, McLaughlin et al. 2023).
The growth and reproduction of rhizosphere micro-
organisms further degrade antibiotics or interfere
with the migration and transformation of antibiotics
in correlation with exudates. Jin et al. (2015) investi-
gated the degradation of sulfonamides in an artificial
root exudate tank (T-ARE) and concluded that the
presence of rhizosphere exudates, even at the same
concentration of antibiotics, enhanced rhizosphere
microbe activity and increased the SFD removal rate
by 23.8%. Another study found that the removal rate
of 5 mg/L CIP by rhizosphere microorganisms was
only 5.8%, while the removal rate of antibiotics in
synergistic interactions with rhizosphere secretions
was as high as 98% (Sodhi et al. 2021). Li (2021)
showed that the rhizosphere exudates of four plants,
including Vallisneria natans (Lour.) Hara, increased
the degradation rate of SEFD by 39.71-55.85% and that
of sulfachloropyridazine by 40.76—54.44%.

Effects of antibiotics on rhizosphere exudates

First, antibiotics can induce changes in the quality
of rhizosphere exudates or lead to unstable compo-
sitions. Exposure to OFL and TC at 10 pg/L stimu-
lated the oxalic acid content of four wetland plants,
including Cyperus alternifolius L., and increased its
cumulative concentration from 7.512-16.488 mg/g
to 22.008-31.944 mg/g over the 24-day experiment
(Tong et al. 2019). After exposure to 150 mg/kg OTC,
the relative abundance of organic acids such as acetic
acid in rhizosphere exudates increased significantly,

while the relative abundance of carbohydrates (such
as galactose) and fatty acids (such as heptadeca-
noic acid and 7-hydroxyoctanoic acids) decreased.
Therefore, OTC affects amino acid metabolism and
carbohydrate metabolism pathways (Guo et al. 2022).

Second, changes in the rhizosphere microbial com-
munity structure under antibiotic stress affect the
composition and quality of rhizosphere exudates
accordingly. At concentrations of 100 mg/kg, TC,
CIP, and sulfonamides increased the number of
rhizosphere microorganisms related to antibiotic
migration and transformation, such as Proteobacteria,
Actinobacteria, and Firmicutes (Grenni et al. 2018).
As aresult, these rhizosphere microorganisms pro-
duced more hormone substances that promoted plant
growth or improved the absorption of nutrients by
plants, thereby releasing more rhizosphere exudates
(Zhou et al. 2016).

RESEARCH OPPORTUNITIES

Mechanism of antibiotic migration and trans-
formation in soil-microbe-plant systems

The study of antibiotics within rhizosphere systems
remains notably insufficient, and there is a critical
need for a more systematic research framework
to unify previous fragmented approaches. Future
research should prioritise the following areas: (1)
investigating the distribution of antibiotics in the
rhizosphere systems of plants, focusing on their mi-
gration and transformation processes; (2) examining
the interconnectivity among different components
within rhizosphere systems in relation to antibiot-
ics; (3) assessing the temporal and spatial variations
of antibiotics within the plant rhizosphere; and (4)
synthesising and applying the mechanisms of interac-
tion between antibiotics and the plant rhizosphere
to enhance antibiotic utilisation and mitigate envi-
ronmental pollution.

Influence of plant age on antibiotic migration
and transformation

Plants of different ages exhibit different root char-
acteristics and developmental degrees (including
the root density, root length, and root diameter).
Root traits can predict the interaction between the
rhizosphere and antibiotics in later stages. Under
antibiotic stress, the older the plant and the more
developed the root system, the stronger its toler-
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ance and adaptability to antibiotics. In addition, the
content of soil organic matter and other nutrients
can change with plant root age, soil structure, and
physical and chemical properties. Soil pores enhance
soil permeability and are closely associated with the
root structure (Li and Duan 2012, Yan et al. 2016).
The uptake and transport of antibiotics by plant roots
are dependent on soil penetration. The abundance
and composition of microorganisms change with
increased plant age, especially in regard to rhizo-
sphere microorganisms such as Actinomycetes that
are involved in antibiotic migration (Xie et al. 2023).
Changes in morphological characteristics caused by
root development allow for the increased secretion
of substances that promote the growth of microor-
ganisms and affect the activities of enzymes such
as urease and protease in soil. This can influence
the antibiotic conversion process. Therefore, it is
necessary to conduct extended studies with differ-
ent plant ages to analyse the effect of plant age on
antibiotic migration and transformation.

CONCLUSIONS

Interaction mechanisms between the plant rhizos-
phere system (consisting of soil-plant-microbes) and
antibiotics have been reviewed in this article. The
effects of plants on antibiotics in the rhizosphere sys-
tem were divided into two aspects, namely, the direct
rhizosphere uptake of antibiotics and the influence of
rhizosphere microorganisms, enzymes, and exudates
on antibiotics. The main findings include that the
absorption of antibiotics by plants is influenced by
their MW and log K. which can be divided into
three classes: (1) antibiotics (including TYL, ERY,
and RTM) with high lipophilicity (log K > 2) are
mostly adsorbed by root lipids and rarely participate
in the soil-plant transport process; (2) antibiotics
(including AZI) withlog K_ < 2 and high MWs (MW
> 700) are blocked outside the plant roots; and (3)
antibiotics (including ENR and danofloxacin) with
log K <2andlow MWs (MW < 700) can enter the
plant through the roots and are transported through
transpiration flow in plants. Antibiotics (including
TC, CTC, and OTC) withlog K_ <1 are more easily
transported into plant tissues, such as stems, leaves,
and fruits. In addition, antibiotics are more readily
adsorbed by plants with extensive root systems and
superior transport capabilities.

The fate of antibiotics can include biosorption, bio-
accumulation, biodegradation, or biotransformation
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through the action of soil rhizosphere microorgan-
isms and their ability to absorb, use, and transform
antibiotics in the soil environment. The microorgan-
isms capable of participating in the antibiotic migra-
tion and transformation process are concentrated
in Actinobacteria, Firmicutes, Proteobacteria, and
Bacteroidetes. Rhizosphere enzymes can degrade
different classes of antibiotics to form both inactive
or more active metabolites through catalysis. This
process involves breaking the molecular structure of
antibiotics, introducing new structures, and reducing
or enhancing their inhibitory effect on rhizosphere
microorganisms. The inhibitory effect of antibiot-
ics on DHA, sucrase, urease, catalase, and alkaline
phosphatase activities surpasses the promoting effect,
reducing the activities of these enzymes by an average
of 6-35%. However, the promoting effect of antibiotics
on peroxidase, acidic phosphatase, and manganese
peroxidase outweighs the inhibitory effect, resulting
ina2-23% increase in enzyme activity. There are still
major knowledge gaps in the research regarding the
mechanism of antibiotic migration and transformation
in soil-microbe-plant systems, as well as the influence
of plant age and different root characteristics on the
migration and transformation of antibiotics.
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