
Rice (Oryza sativa L.) is one of the world’s primary 
food crops and an important staple food for most 
of the world’s population. Approximately 90% of the 
world’s rice is grown and consumed in Asia (Anand 
et al. 2017, Kumar et al. 2024). The world popula-
tion is growing rapidly, and the addition of fertilisers 
has become necessary to improve rice growth and 

productivity according to the global demand (Singh 
2017, Albahri et al. 2023).

Phosphorus, as an essential nutrient for plant 
growth and development, not only is a component 
of many important organic compounds, includ-
ing nucleic acids, phospholipids, and ATP but also 
participates in various metabolic processes, such as 
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energy transfer and protein activation (Shamsuddin et 
al. 2015, Qaswar et al. 2020, Prathap et al. 2023, Sun 
et al. 2024). Phosphate fertiliser plays an extremely 
important role in agricultural production (Khalf 
et al. 2021, Wendimu et al. 2023, Yang et al. 2024). 
Phosphorus deficiency restricts plant growth and 
development and reduces leaf area. Conversely, plant 
respiration is enhanced under conditions of exces-
sive phosphorus application, leading to substantial 
consumption of sugars and energy, which ultimately 
inhibits plant growth (Veronica et al. 2017, Deng et 
al. 2021, Sun et al. 2024). The excessive application 
of phosphorus can harm the environment by pro-
moting surface runoff loss, groundwater leaching, 
and eutrophication in water bodies (Shamsuddin et 
al. 2015, Nawaz et al. 2022, Yahaya et al. 2023, Hu 
et al. 2024). Furthermore, it restricts the increase 
in rice yield (Shamsuddin et al. 2015, Rinasoa et al. 
2023). Therefore, improving the utilisation efficiency 
of phosphorus fertiliser resources is essential to 
sustainable rice development.

Starch biosynthesis and accumulation in endosperm 
cells occur during grain filling and enrichment (Yang 
et al. 2004, Li et al. 2018, Iqbal et al. 2021, Fei et 
al. 2024). Photosynthetic assimilates produced by 
source organs are mainly transported to the grains 
in the form of sucrose, which is then transformed 
into starch, adenosine diphosphate glucose pyroph-
osphorylase (ADGPase), starch synthase (SS), and 
starch-branching enzymes (SBEs) in the grains, play-
ing an important role in starch synthesis (Yang et al. 
2004, Li et al. 2018, Iqbal et al. 2021, Chen et al. 2023, 
Yu et al. 2024). Improper phosphorus application re-
sults in abnormal grain filling, reducing grain-filling 
rate and grain yield (Li et al. 2018, Iqbal et al. 2021, 
Sun et al. 2023). How to maintain a high rice yield 
and even further improve yield when phosphorus 
resources are limited has been explored. The applica-
tion of appropriate amounts of phosphorus fertiliser 
is beneficial for starch synthesis in grains, resulting 
in plumper grains and increasing grain weight and 
yield (Qaswar et al. 2020, Deng et al. 2021, Wendimu 
et al. 2023, Yang et al. 2024). An increase in the activ-
ity of key enzymes in the sucrose-starch metabolism 
pathway considerably increases starch content in 
rice grains (Yang et al. 2004, Iqbal et al. 2021, Sun 
et al. 2023, Zang et al. 2024). In addition, suitable 
phosphorus application promotes the decomposi-
tion of sucrose in grains, providing precursors for 
starch synthesis, and the activity of sucrose synthase 
(SuSase) in grains of different cultivars is affected 

differently by phosphorus fertiliser (Dissanayaka et 
al. 2018, Hayes et al. 2022, Sun et al. 2024). Deng et 
al. (2021) observed that the superiority of YJ2 in low 
phosphorus was attributed to high tillers, increased 
root dry weight, enhanced root-shoot ratio, remo-
bilisation of NSC from stem to grain, and enhanced 
ATPase activity in the roots and POD activity in the 
grains (Deng et al. 2021). Previous studies focused 
on the low phosphorus tolerance of rice cultivars 
under different phosphorus levels and the selec-
tion of phosphorus-efficient cultivars (Veronica et 
al. 2017, Dissanayaka et al. 2018, Zhang et al. 2021, 
Verbeeck et al. 2023, Kumar et al. 2024, Sun et al. 
2024). However, little is known about changes in 
rice’s grain filling and physiological traits combined 
with phosphorus-tolerant cultivars during the whole 
growth period at different phosphorus rates.

Leaf senescence is an adaptive mechanism formed 
by plants during long-term evolution, closely related 
to the formation of harvesting organs and nutrient 
transport, regulated by internal factors of the plant, 
and is an irreversible physiological and biochemi-
cal process (Farooq et al. 2019, Zhou et al. 2023, 
Averill-Bates 2024). In rice, grains compete with 
leaves for phosphorus during the grain-filling stage, 
and this competition accelerates leaf senescence, 
which is inconducive to photosynthesis and affects 
grain weight under phosphorus-deficient condi-
tions (Kwanho et al. 2017, Cao et al. 2023, Zhou et 
al. 2023). The effects of phosphate fertiliser rate on 
the senescence characteristics of crops have been 
extensively studied, but conclusions are inconsistent 
(Kwanho et al. 2017, Wu et al. 2022, Zhou et al. 2023). 
The activity of antioxidant enzymes increases under 
low-phosphorus conditions, which can effectively 
scavenge reactive oxygen species (ROS; Sewelam 
et al. 2016, Cao et al. 2023). POD activity in leaves 
first increases and then decreases with increasing 
phosphorus application rate, malondialdehyde (MDA) 
content is inhibited, and leaf senescence is delayed at 
an appropriate phosphorus application rate (Dang et 
al. 2023). Notably, excessive phosphorus application 
increases MDA content, accelerates leaf senescence, 
and is thus inconducive to photosynthesis (Song et 
al. 2015). Compared with varieties with weak low-
phosphorus tolerance, cultivars with strong low-
phosphorus tolerance have stronger adaptability 
to low-phosphorus environments and higher ROS-
scavenging ability (Deng et al. 2021, Zhou et al. 
2023, Kumar et al. 2024, Sun et al. 2024). However, 
evidence of leaf senescence traits is limited, especially 
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evidence regarding increased yield and enhanced 
grain-filling rate at different phosphorus fertiliser 
rates and cultivar types.

High chlorophyll content and photosynthetic rate 
at the reproductive growth period can promote grain 
filling, enhance sucrose synthesis and transport in 
leaves, and is conducive to assimilation accumu-
lation and yield formation (Xu et al. 2019, 2020, 
Vishwakarma et al. 2023, Fei et al. 2024). However, 
the mechanism of key enzymes that are involved in 
grain filling and leaf senescence and affect chlorophyll 
content and photosynthetic rate in leaves and their 
relationship to grain filling and rice yield at different 
phosphorus fertiliser rates and in different cultivar 
types remain unclear.

This study aimed to investigate grain filling and the 
physiological performance of different phosphorus-
tolerant cultivars at different phosphorus fertiliser 
rates. We examined changes in grain filling and physi-
ological characteristics throughout the rice growth 
season, including changes in maximum grain-filling 
rate, average grain-filling rate, active filling period, 
photosynthetic rate, soil and plant analyser develop-
ment (SPAD) value, SOD activity, catalase (CAT) and 
MDA content in leaves, and adenosine diphosphate 
glucose pyrophosphorylase (AGPase) and SuSase 
activity in grains. Furthermore, we analysed their 
correlations with grain yield and grain filling. The 
results can provide novel information for the selec-
tion of phosphorus-tolerant cultivars and guidance 
regarding the reasonable use of phosphate fertilisers.

MATERIAL AND METHODS

Plant materials. Experiments were conducted at 
Henan University of Science and Technology, Luoyang, 
China (34°39'N, 112°26'E) from May to October in 2022 
and repeated in 2023. Cv. Lianjing 7 (weak phosphorus 
tolerance) and cv. Yongyou 2640 (strong phosphorus 
tolerance) were grown in pots. Each pot was 25 cm in 
diameter and 30 cm in height, and 13 kg of soil was 
placed in each pot. The soil from the field was clay 
loam (Typic Fluvaquents, Entisols, US Taxonomy) 
containing 11.3 g/kg organic carbon, soil pH value of 
7.4 and 105.1, 5.2, and 118.6 g/kg available nitrogen, 
phosphorus, and potassium. The air temperatures 
for each month were 29, 26.5, 26.5, 22.5, and 14.5 °C 
in 2022 and 25.5, 28.5, 27, 22.5, and 17.5 °C in 2023 
from transplantation (June) to harvesting (October).

Treatments. A completely randomised experiment 
was performed. Four levels of phosphorus fertiliser 

application were designed, that is, 0, 0.44, 0.88 and 
1.32 g P/pot, and were labelled as P0, P1, P2, and 
P3, respectively. The same amounts of nitrogen and 
potassium were applied to all treatments, which were 
2.0 and 0.83 g/pot, respectively. Submerged irrigation 
with a water depth of 2–3 cm was adopted during 
the regreening stage according to farming practices, 
and wetting and moderate-drying irrigation were 
alternated between stages, except in the late tillering 
stage, when light-field drainage was conducted, and 
1 week before the final harvest. The plots were not re-
watered until the soil water potential reached −20 kPa 
in the alternate wetting-and-moderate-drying ir-
rigation. Soil water potential was monitored with 
a vacuum-suction gauge (produced by the Institute 
of Soil Science, Chinese Academy of Sciences). The 
gauges were installed in the pools by placing each 
pottery head 15 cm below the soil. 30% of nitrogen 
fertiliser (urea) was applied 1 day before transplanta-
tion, 30% was applied 7 days after transplantation, 
and 40% was applied in the panicle-initiation period. 
Before transplantation, partial nitrogen fertiliser, 
total superphosphate (containing 5.89% phospho-
rus) and potassium chloride (43% potassium) were 
applied in each treatment. During field cultivation, 
sowing was performed on May 10th, transplantation 
was performed on June 10th to pots with three hills, 
two seedlings were sown per hill, and 25 pots were 
performed for each treatment. Diseases, pests, and 
weeds were strictly controlled throughout the entire 
growth period in both years.

Sampling and measurement

Sampling. A total of 150 spikes that headed on 
the same day were selected and labelled for each 
plot. Fifteen labelled spikes from each pot were 
sampled at 6-day intervals from anthesis to maturity. 
All grains except the second grain in the primary 
branch at the top of the spikelet and the first grain 
in the secondary branch were regarded as superior 
grains. The second grains in the first and secondary 
branches were regarded as inferior grains (Wei et 
al. 2017). Half of the sampled grains were frozen in 
liquid nitrogen for 30 s and then stored in a −70 °C 
refrigerator for the determination of enzyme activ-
ity. The other sampled grains were dried at 70 °C 
to constant weight and weighed. The processes of 
grain filling were fitted with the growth equation of 
Richards (1959), as described by Zhu et al. (1988). 
The flag leaves of rice were sampled at 6 (labelled 
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as early grain filling stage), 18 (labelled as middle 
grain filling stage), and 30 days (labelled as late grain 
filling stage) after anthesis for determination of 
senescence-related indexes.

Adenosine phosphate glucose pyrophosphorylase 
(AGPase) and SuSase enzyme activity. Extraction 
methods for enzyme activity were described by Yang 
et al. (2004). Grains (40–50) were ground using 
a mortar and extracted in 9 mL of 50 mmol/L HEPES-
NaOH extract (pH 7.5) containing 5 mmol/L MgCl2, 
5 mmol/L DTT, and 2% (w/v) PVP 40. A filter solution 
was centrifuged for 10 min at 10 000 rpm and 4 °C, and 
the supernatant was used for enzyme determination.

Adenosine phosphate glucose pyrophosphorylase 
(AGPase) activity was measured using the proce-
dure of Nakamura et al. (1989). The reaction mix-
ture consisted of 100 μL of 5 mmol ADPG, 50 μL of 
50 mmol MgCl2, 100 μL of 50 mmol Hepes-NaOH, 
and 50 μL enzyme extract. The reaction was started 
by adding 100 μL of 20 mmol pyrophosphoric acid. 
The reaction was terminated by adding 100 μL of 
6 mmol oxidised coenzyme II, 50 μL of 1.5 IU phos-
phoglucose mutase, 50 μL of 5 IU glucose-6-phosphate 
dehydrogenase, and 1.4 mL of 50 mmol Hepes-NaOH 
(pH = 7.5) after cooling, and change in absorbance 
was measured at 340 nm.

SuSase activity was determined using the methods 
described by Ranwala and Kato (1995). The reaction 
mixture consisted of 50 μL of HEPES-NaOH buffer 
(pH = 7.5), 20 μL of 50 mmol/L MgCl2, 20 mL of 
100 mmol/L fructose solution, 20 μL of 100 mmol/L 
UDPG, and 90 μL of an enzyme extract. The reac-
tion was started by adding 1.5 mL of 300 g/L HCl 
and 0.5 mL of 1 g/L resorcinol, and the change in 
absorbance was measured at 480 nm—the amount of 
sucrose after the enzymatic reaction was calculated 
according to the standard curve.

M a l o n d i a l d e hy d e  c o n t e n t  a n d  s u p e r ox -
ide dismutase and catalase enzyme activity. 
Malondialdehyde content in leaves was determined 
as described by Velikova et al. (2000). Leaf samples 
(0.1 g) were homogenised in 5 mL of 5% trichloro-
acetic acid. The homogenate was centrifuged at 12 
000 rpm for 15 min and 4 °C, and the supernatant 
was used in determining MDA content at 532, 600, 
and 450 wavelengths.

Leaf samples (0.1 g) were homogenised in 10 mL 
of 50 mmol/L phosphate buffer (pH = 7.0). The ho-
mogenate was centrifuged at 12 000 rpm for 15 min 
and 4 °C. The supernatant was used to determine the 
levels of superoxide dismutase and catalase activity. 

SOD activity was measured according to the method 
described by Dhindsa et al. (1981). The 3 mL of re-
action mixture consisted of 13 mmol/L methionine, 
75 mmol/L nitroblue tetrazolium chloride (NBT), 
2 µmol/L riboflavin, 10 µmol/L EDTA, and 0.05 mol/L 
phosphate buffer (pH = 7.5). One unit of SOD activ-
ity was deemed as the amount of enzyme that was 
required to inhibit 50% photochemical reduction of 
nitro blue tetrazolium.

CAT activity was measured using Aebi’s method 
(1984). An assay mixture (3 mL) composed of 1 mL 
of 0.3% hydrogen peroxide, 1.9 mL of distilled water, 
and 0.1 mL of enzyme extract was used. The reac-
tion was started by adding an enzyme extract, and 
a decrease in absorbance was recorded at 240 nm. 
CAT activity was expressed as U/g/min FW.

Photosynthesis rate and SPAD value. Plants from 
50 hills in each treatment were sampled to measure 
photosynthesis rate and SPAD value at mid-tillering, 
panicle initiation, heading, and maturity stages. 
Chlorophyll content in the leaves was measured 
using SPAD-502 and the method of Li et al. (2012).

The photosynthesis rate of the upmost fully ex-
panded leaves in each treatment was measured 
using a Li 6800 photosynthesis analyser (LI-COR, 
Co., Ltd., Lincoln, USA) from 09:00 to 11:00, when 
photosynthesis-activity radiation above the canopy 
was 1 500 μmol/m2/s.

pH and chemical properties of soil.  Pot soil 
samples were collected before transplantation at 
a 0–20 cm depth with 3 replications. The soil pH and 
chemical indicators were determined following the 
method described by Gajda et al. (2017).

Grain yield. Rice plants were harvested on October 
15, 2022, and October 16, 2023—five pots for each 
treatment obtained grain yield. Yield components, 
namely panicles per pot, spikelets per panicle, filled-
grain rate, and 1 000-grain weight, were determined 
in the five pots of each treatment. The filled-grain 
rate was expressed as the ratio of ripened grains 
(specific gravity ≥ 1.06) to the total spikelet.

Data analysis

Data was analysed using the SAS/STAT statisti-
cal analysis package for variance (version 9.2, SAS 
Institute, Cary, USA). Mean values were tested using 
the least significant difference at P0.05 (LSD0.05). The 
Spearman model was used to evaluate the relation-
ships between enzyme activity and photosynthesis 
rate with grain yield and grain-filling characteristics.
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RESULTS

Grain yield and its component. Cultivar, phospho-
rus application rate, and their interaction considerably 
affected grain yield and its components (P < 0.05, 
Table 1). Specifically, the grain yield of cv. Lianjing 
7 reached the highest value at the P2 treatment and 
increased by 55.0% (2022) and 50.1% (2023) compared 
with the grain yield obtained when no phosphorus was 
applied. The grain yield of cv. Yongyou 2640 was the 
highest at the P1 treatment, and the yield increased 
by 73.1% (2022) and 68.4% (2023) compared with 
the grain yield obtained when no phosphorus was 
applied. P3 treatment significantly reduced the grain 

yield when compared with the optimal phosphorus 
application rate of the two cultivars. Compared with 
cv. Lianjing 7, cv. Yongyou 2640 increased grain yield 
by 15.2% (2022) and 18.7% (2023).

Panicle, spikelets, and filled grain rate significant-
ly increased in cv. Lianjing 7 after P2 treatment and 
cv. Yongyou 2640 after P1 treatment compared with 
those obtained without phosphorus application. This 
result indicated that suitable phosphorus application 
improved total spikelets and grain filling, thus enhanc-
ing yield. Although panicle and grain weight decreased, 
increases in spikelets and grain-filling rate can compen-
sate for the reduction. Consequently, the yield increased 
significantly compared with the yield of cv. Lianjing 7.

Table 1. Grain yield and its components of cvs. Lianjing 7 and Yongyou 2640 under phosphorus fertiliser rates 
in different phosphorus-tolerance cultivars of rice

Year Cultivar Treatment Panicles 
(pot)

Spikelet per 
panicle

Filled grain 
rate (%)

1 000-grain 
weight (g)

Yield 
(g/pot)

2022

Lianjing 7

P0 33.5c 154.3e 55.4de 24.3c 69.6d

P1 34.0c 158.4e 59.0cd 25.5b 81.0cd

P2 40.3a 161.8de 61.5c 26.8a 107.9b

P3 37.0b 176.7cd 52.3e 23.8c 81.2cd

Yongyou
2640

P0 26.7d 185.1c 61.5c 23.1d 69.8d

P1 26.0de 208.9b 87.8a 25.3b 120.8a

P2 24.3de 229.5a 83.8ab 23.9c 111.8ab

P3 23.7e 203.3b 80.5b 22.7d 87.6c

2023

Lianjing 7

P0 30.0b 135.3e 63.8d 27.4ab 71.0e

P1 31.0ab 138.4e 67.9d 27.8a 80.8d

P2 32.0a 151.8d 79.9bc 27.7a 107.2b

P3 32.0a 144.7de 66.9d 26.4b 81.8cd

Yongyou
2640

P0 23.0d 184.3c 75.5c 23.8c 76.0de

P1 25.7c 234.0a 91.1a 23.4c 128.0a

P2 24.7c 229.2a 83.5b 23.4c 110.2b

P3 23.0d 206.4b 79.3bc 23.2c 87.1c

ANOVA
Cultivar (C) 748.9** 503.6** 412.2** 308.9** 72.0**
Phosphorus fertiliser rate (P) 6.6** 21.8** 54.2** 22.1** 110.5**
Year (Y) 82.5** 7.0* 97.5** 40.9** ns
C × P 16.2** 12.1** 20.6** 4.8** 36.7**
C × Y 33.9** 27.7** 26.3** 72.7** ns
P × Y ns ns ns 9.6** ns
C × P × Y 7.7** ns 10.8** 4.0* ns

P0 – no phosphorus application; P1 – 0.44 g/pot; P2 – 0.88 g/pot; P3 – 1.32 g/pot; cv. Lianjing 7 was low-phosphorus-
sensitive cultivar and cv. Yongyou 2640 was low-phosphorus-tolerant cultivar. Different letters indicate statistical sig-
nificance at P < 0.05 within a column in the same year. * and ** indicate F-values significance at P < 0.05 and P < 0.01; 
ns – not significant at P = 0.05
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Grain-filling characteristics of superior and 
inferior grains. Grain weight rapidly increases and 
then slowly increases (Figure 1). The inferior grains in 
both cultivars were lower in weight than the superior 
grains. Phosphorus application exerted a considerable 
effect on the weight of superior grains. Cv. Lianjing 
7 had the highest grain weight under P2 treatment, 
while cv. Yongyou 2640 had the highest weight of 
superior grains under the P1 treatment. The weight 
of an inferior cv. Lianjing 7 and cv. Yongyou 2640 
grains showed 12.6% and 9.2% increases 30 days 
after anthesis, compared with that obtained without 
phosphorus application. The results suggested that 
the grain weight of different phosphorus-tolerant 
rice was affected by phosphorus fertiliser rates, and 
excessive phosphorus application would reduce the 
grain weight.

The grain-filling rate of rice initially increased and 
then decreased during growth (Figure 2). Considerable 
differences in grain-filling rate were found between 

the superior and inferior grains of different phospho-
rus-tolerant rice cultivars under phosphorus applica-
tion conditions. Specifically, the grain-filling rate of 
superior grains was obviously higher than those of 
inferior grains. Similar to grain yield, the maximum 
filling rate of cv. Lianjing 7 reached its highest value 
after P2 treatment, increasing by 8.0% (superior 
grain) and 7.0% (inferior grain) compared with the 
maximum filling rate obtained without phosphorus 
application. In addition, cv. Yongyou 2640 had the 
maximum filling rate after the P1 treatment, show-
ing an increase of 15.3% (superior grains) and 9.7% 
(inferior grains). P3 treatment significantly reduced 
the grain-filling rate compared with the optimal 
phosphorus application rate of the two cultivars. 
Compared with cv. Lianjing 7, cv. Yongyou 2640 
showed an increase in the maximum grain-filling 
rate of its superior and a decrease in inferior grains. 
The result indicated that the application of phos-
phorus fertiliser can improve the grain-filling rate, 

Figure 1. Superior and inferior grains weight of cvs. Lianjing 7 and Yongyou 2640 under phosphorus fertiliser 
rates in different phosphorus-tolerance cultivars of rice. P0 – no phosphorus application; P1 – 0.44 g/pot; P2 – 
0.88 g/pot; P3 – 1.32 g/pot; cv. Lianjing 7 was a low-phosphorus-sensitive cultivar and cv. Yongyou 2640 was 
low-phosphorus-tolerant cultivar; A – superior grains of cv. Lianjing 7; B – inferior grains of cv. Lianjing 7; 
C – superior grains of cv. Yongyou 2640; D – inferior grains of cv. Yongyou 2640
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but excessive phosphorus application inhibited the 
grain-filing rate of rice.

Photosynthetic rate and SPAD value. Analysis of 
variance indicated a significant effect of cultivar and 
phosphorus fertiliser rates, as well as their interac-
tion, on leaf photosynthetic rate at different stages 
(P < 0.05; Table 2). Similar to the grain-filling rate, 
the photosynthetic rate of cv. Lianjing 7 reached 
the highest at P2 treatment, which increased by 
10.4–56.7% (2022) and 17.1–45.6% (2023) compared 
with the photosynthetic rate without phosphorus 
application. Meanwhile, the leaf photosynthetic rate 
was the highest under the P1 treatment, followed 
by the P2 and P3 treatment, and the lowest under 
the P0 treatment of cv. Yongyou 2640. Under the 
same phosphorus fertiliser rates, compared with 
cv. Lianjing 7, cv. Yongyou 2640 increased leaf photo-
synthetic rate by 17.6% (panicle initiation) and 22.4% 
(maturity) in 2022 and 21.7% (panicle initiation) and 
35.3% (maturity) in 2023.

The SPAD value of the leaves varied by cultivar, 
phosphorus fertiliser rate, and growth stage (Figure 3). 
It presented an up-down trend during growth, peaked 
at the heading stage, and subsequently declined. The 
highest SPAD value of cv. Lianjing 7 was obtained 
with the P2 treatment, increasing by 13.7–19.6% 
(2022) and 10.9–45.9% (2023) compared with that 
without phosphorus application. Meanwhile, the 
SPAD value of cv. Yongyou 2640 peaked in the P1 
treatment, increasing by 10.3–16.0% (2022) and 
7.3–28.8% (2023). Compared with cv. Lianjing 7, 
cv. Yongyou 2640 showed significantly increased 
SPAD values in its leaves, especially at both years’ 
mid-tillering and heading stages. This result indicated 
that the SPAD values of rice leaves with different 
phosphorus-tolerant cultivars were affected differ-
ently by phosphorus application rate.

AGPase and SuSase activity of the superior and 
inferior grains. Different cultivars and phosphorus 
application rates significantly affected AGPase activity 

Figure 2. Superior and inferior grains filling of cvs. Lianjing 7 and Yongyou 2640 under phosphorus fertiliser 
rates in different phosphorus-tolerance cultivars of rice. P0 – no phosphorus application; P1 – 0.44 g/pot; P2 – 
0.88 g/pot; P3 – 1.32 g/pot; cv. Lianjing 7 was low-phosphorus-sensitive cultivar and cv. Yongyou 2640 was 
low-phosphorus-tolerant cultivar; A – superior grains of cv. Lianjing 7; B – inferior grains of cv. Lianjing 7; 
C – superior grains of cv. Yongyou 2640; D – inferior grains of cv. Yongyou 2640
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in the superior and inferior grains at different grain-
filling stages each year (Figure 4). AGPase activity in 
the grains was higher in metaphase than in prophase 
and anaphase of the filling stage. AGPase activity 
in superior grains was higher than that of the infe-
rior grains under different phosphorus rates at the 
growth stage. Specifically, cv. Lianjing 7 showed an 
11.7–33.5% increase in phosphorus rate compared 
with that of the inferior grains and cv. Yongyou 2640 
showed a 12.4–44.4% increase. AGPase activity in the 
grains significantly increased with phosphorus con-
tent, but excessive phosphorus application inhibited 
AGPase activity. Similar to the leaf photosynthesis 
rate, the AGPase activity of cv. Lianjing 7 reached 
its highest value after the P2 treatment, increasing 
by 18.3% (superior grain) and 20.3% (inferior grain) 

compared with AGPase activity without phosphorus 
application. In addition, cv. Yongyou 2640 had the 
maximum enzyme activity under the P1 treatment, 
which was enhanced by 19.9% (superior grains) and 
27.8% (inferior grains). Compared with cv. Lianjing 
7, cv. Yongyou 2640 elevated AGPase activity at each 
stage for both years.

SuSase activity in rice grains varied with culti-
var, phosphorus fertiliser rates, and growth stages 
(Figure 5). It presented an up-down trend with the 
grain process, peaked at the metaphase stage, and 
subsequently declined. SuSase activity in superior 
grains was obviously higher than those of infe-
rior grains. Specifically, the enzyme activity dur-
ing the prophase stage of grain filling in superior 
grains of cv. Lianjing 7 increased by 9.9–22.0%, and 

Table 2. Photosynthetic rate of cvs. Lianjing 7 and Yongyou 2640 under phosphorus fertiliser rates in different 
phosphorus-tolerance cultivars of rice

Year Cultivar Treatment Mid-tillering Panicle initiation Heading Maturity

2022

Lianjing 7

P0 16.20f 15.21e 13.87f 7.89c

P1 17.36e 17.24d 14.52ef 8.42c

P2 24.14b 23.83ab 15.31e 10.68ab

P3 22.78c 20.14c 14.03f 9.46bc

Yongyou
2640

P0 18.74d 17.19d 16.71d 10.11b

P1 26.97a 24.60a 21.14a 12.12a

P2 25.20b 23.86ab 19.95b 11.14ab

P3 24.61b 23.08b 17.60c 10.72ab

2023

Lianjing 7

P0 15.85f 12.32e 15.87e 4.45e

P1 17.81e 14.58d 18.67b 5.11cd

P2 21.39b 17.94b 20.60a 5.21cd

P3 20.30cd 15.32d 18.43b 5.00d

Yongyou
2640

P0 17.32e 16.80c 16.71d 5.35c

P1 23.14a 19.17a 20.10a 7.60a

P2 20.43c 18.83a 18.57b 6.97b

P3 19.43d 17.47bc 17.67c 6.93b

ANOVA
Cultivar (C) 240.38** 312.11** 250.96** 101.02**
Phosphorus fertiliser rate (P) 248.58** 189.13** 103.72** 14.37**
Year (Y) 247.80** 560.75** 155.40** 537.51** 
C × P 112.00** 43.41** 22.27** 5.61**
C × Y 60.74** ns 282.54** ns
P × Y 21.10** 25.46** 3.92* ns
C × P × Y 4.36* 10.65** 13.05** 3.30*

P0 – no phosphorus application; P1 – 0.44 g/pot; P2 – 0.88 g/pot; P3 – 1.32 g/pot; cv. Lianjing 7 was low-phosphorus-
sensitive cultivar and cv. Yongyou 2640 was low-phosphorus-tolerant cultivar. Different letters indicate statistical sig-
nificance at P < 0.05 within a column in the same year. * and ** indicate F-values significance at P < 0.05 and P < 0.01; 
ns – not significant at P = 0.05
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Figure 3. Soil and plant analyser development (SPAD) value in leaves of cvs. Lianjing 7 and Yongyou 2640 under phospho-
rus fertiliser rates in different phosphorus-tolerance cultivars of rice. P0 – no phosphorus application; P1 – 0.44 g/pot; 
P2 – 0.88 g/pot; P3 – 1.32 g/pot; cv. Lianjing 7 was low-phosphorus-sensitive cultivar and cv. Yongyou 2640 was low-
phosphorus-tolerant cultivar; Vertical bars represent ± standard error (SE) of the mean. The SE was calculated across three 
replications for each year. Different letters indicate statistical significance at P < 0.05 within the same stage

Figure 4. Adenosine diphosphate glucose pyrophosphorylase (AGPase) activities of superior and inferior grains of cvs. 
Lianjing 7 and Yongyou 2640 under phosphorus fertiliser rates in different phosphorus-tolerance cultivars of rice. P0 – 
no phosphorus application; P1 – 0.44 g/pot; P2 – 0.88 g/pot; P3 – 1.32 g/pot; cv. Lianjing 7 was low-phosphorus-
sensitive cultivar and cv. Yongyou 2640 was low-phosphorus-tolerant cultivar. Early, middle, late represented 6th, 
18th, 30th after anthesis. Vertical bars represent ± standard error (SE) of the mean. The SE was calculated across three 
replications for each year. Different letters indicate statistical significance at P < 0.05 within the same stage
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cv. Yongyou 2640 increased by 21.3–33.9% compared 
to inferior grains. Among the four phosphorus ferti-
liser treatments, the SuSase activity of cv. Lianjing 7 
was the highest under P2 treatment, which increased 
by 24.8% (superior grain) and 31.4% (inferior grain) in 
the prophase of the filling stage relative to the SuSase 
activity obtained without phosphorus application. 
Meanwhile, cv. Yongyou 2640 had its maximum 
SPAD value after the P1 treatment, showing 26.3% 
(superior grain) and 22.8% (inferior grain) increases. 
Excessive phosphorus application (P3 treatment) 
inhibited SuSase activity and thus was inconducive 
to grain growth. At the same phosphorus fertiliser 
rates, SuSase activity in cv. Yongyou 2640 increased 
by approximately 52.6% (early grain filling stage), 
53.3% (mid grain filling stage), and 55.5% (late grain 
filling stage) in 2022 and 25.5% (early grain filling 
stage), 16.4% (mid grain filling stage), and 52.8% 
(late grain filling stage) in 2023, compared with that 
in cv. Lianjing 7.

Leaf senescence characteristics. Different culti-
vars and phosphorus application rates significantly 
affected MDA content in the leaves at different grain-
filling stages and each year (Figure 6). In contrast 
to the SPAD value in the leaves, MDA content in 
the leaves decreased first and then increased with 
increasing phosphorus content. Specifically, the 
MDA content of cv. Lianjing 7 reached its lowest 
value after the P2 treatment, decreasing by 23.8% 
on average relative to that obtained without phos-
phorus application. Meanwhile, the MDA content of 
cv. Yongyou 2640 reached its lowest value after the 
P1 treatment, decreasing by 24.5% on average. Under 
the same phosphorus fertiliser rates, the MDA con-
tent of cv. Yongyou 2640 decreased by 19.4% (early 
grain filling stage), 6.5% (mid grain filling stage), 
and 17.0% (late grain filling stage) in 2022 and 18.0% 
(early grain filling stage), 5.5% (mid grain filling 
stage), and 14.5% (late grain filling stage) in 2023, 
compared with that of cv. Lianjing 7. Therefore, an 

Figure 5. Ssucrose synthase (SuSase) activities of superior and inferior grains of cvs. Lianjing 7 and Yongyou 
2640 under phosphorus fertiliser rates in different phosphorus-tolerance cultivars of rice. P0 – no phospho-
rus application; P1 – 0.44 g/pot;P2 – 0.88 g/pot; P3 – 1.32 g/pot; cv. Lianjing 7 was low-phosphorus-sensitive 
cultivar and cv. Yongyou 2640 was low-phosphorus-tolerant cultivar. Early, middle, late represented 6th, 18th, 
30th after anthesis. Vertical bars represent ± standard error (SE) of the mean. The SE was calculated across three 
replications for each year. Different letters indicate statistical significance at P < 0.05 within the same stage
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appropriate amount of phosphate fertiliser can ef-
fectively regulate MDA content in leaves and improve 
their physiological activity.

SOD activity in the leaves varied with cultivar and 
phosphorus fertiliser rate and decreased gradually 
at the growth stage (Figure 7). The SOD activity of 
cv. Lianjing 7 peaked after the P2 treatment, increas-
ing by 31.2–61.4% (2022) and 35.8–97.3% (2023) 

compared with that obtained without phospho-
rus application. Meanwhile, the SOD activity of 
cv. Yongyou 2640 showed its maximum value after 
the P1 treatment, increasing by 66.5–153.4% (2022) 
and 63.9–78.5% (2023). Compared with cv. Lianjing 
7, cv. Yongyou 2640 showed elevated SOD activity 
at each stage for both years. The result indicated 
that an appropriate amount of phosphorus fertiliser 

Figure 6. Mmalondialdehyde (MDA) content in leaves of cvs. Lianjing 7 and Yongyou 2640 under phosphorus 
fertiliser rates in different phosphorus-tolerance cultivars of rice. P0 – no phosphorus application; P1 – 0.44 g/pot; 
P2 – 0.88 g/pot; P3 – 1.32 g/pot; cv. Lianjing 7 was low-phosphorus-sensitive cultivar and cv. Yongyou 2640 
was low-phosphorus-tolerant cultivar. Early, middle, late represented 6th, 18th, 30th after anthesis. Vertical bars 
represent ± standard error (SE) of the mean. The SE was calculated across three replications for each year. Dif-
ferent letters indicate statistical significance at P < 0.05 within the same stage. FW – fresh weight

Figure 7. Ssuperoxide dismutase (SOD) activity in leaves of cvs. Lianjing 7 and Yongyou 2640 under phosphorus 
fertiliser rates in different phosphorus-tolerance cultivars of rice. P0 – no phosphorus application; P1 – 0.44 g/pot; 
P2 – 0.88 g/pot; P3 – 1.32 g/pot; cv. Lianjing 7 was low-phosphorus-sensitive cultivar and cv. Yongyou 2640 
was low-phosphorus-tolerant cultivar. Early, middle, late represented 6th, 18th, 30th after anthesis. Vertical bars 
represent ± standard error (SE) of the mean. The SE was calculated across three replications for each year. Dif-
ferent letters indicate statistical significance at P < 0.05 within the same stage. FW – fresh weight
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is conducive to SOD activity in leaves. In contrast, 
excessive phosphorus fertiliser application not only 
reduces SOD activity but also causes the waste of 
phosphorus resources.

Analysis of variance indicated the significant effects 
of cultivar, phosphorus fertiliser rate, and their inter-
action on CAT activity at different stages (Figure 8). 
Like SOD activity in the leaves, CAT activity in 
the leaves decreased gradually at the growth stage. 
Specifically, CAT activity in the leaves of cv. Lianjing 
7 showed its highest value after the P2 treatment, 
increasing by 19.3% on average, compared with no 
phosphorus application. Meanwhile, after the P1 
treatment, cv. Yongyou 2640 showed maximum 
CAT activity, which increased by 21.8%. Under the 
same phosphorus fertiliser rates, CAT activity in 
cv. Yongyou 2640 increased by 10.0% (early grain 
filling stage), 10.6% (mid grain filling stage), and 
9.6% (late grain filling stage) in 2022 and 10.1% (early 
grain filling stage), 11.3% (mid grain filling stage), 
and 5.2% (late grain filling stage) in 2023, compared 
with that in cv. Lianjing 7. Therefore, appropriate 
phosphate fertiliser rates can effectively regulate 
CAT content in leaves, delay leaf senescence, and 
improve the physiological function of leaves.

Correlation of rice’s photosynthetic rate, SPAD 
value, leaf senescence, and starch synthase activity 
with grain yield and grain filling. The photosyn-
thetic rate, SPAD value, leaf senescence, and SuSase 
activity of rice were related to yield and grain-filling 

characteristics (Figure 9). Correlation analysis showed 
a significant or extremely significant positive cor-
relation between AGPase and SuSase activity in 
superior and inferior grains, photosynthetic rate, 
SPAD value, SOD and CAT activity in the leaves, and 
grain yield and a negative correlation between MDA 
content and grain yield. Furthermore, a remarkable 
or considerably remarkable positive correlation was 
observed among AGPase and SuSase activity in the 
superior and inferior grains, SOD and CAT activity 
in the leaves, grain weight, and grain-filling rate and 
negative correlations among MDA content, grain 
weight, and grain-filling rate.

DISCUSSION

Effects of phosphorus application rates on yield 
and the component of different phosphorus-tol-
erant rice cultivars. The grain yield and quality 
of rice are affected by genetic and environmental 
factors, such as genotype, temperature, light, mois-
ture, fertiliser, geographical site, and soil health 
(Iqbal et al. 2021, Kesh et al. 2022, Aqib et al. 2022, 
Radha et al. 2023, Yu et al. 2024, Yuan et al. 2024). 
The effects of phosphorus application rates on the 
phosphorus-use efficiency, growth and develop-
ment, physiological characteristics, morphology trait, 
and yield performance of rice have been extensively 
studied (Deng et al. 2021, Patrick et al. 2022, An et 
al. 2023, Wendimu et al. 2023, Sun et al. 2024, Kaur 
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Figure 8. Ccatalase (CAT) activity in leaves of cvs. Lianjing 7 and Yongyou 2640 under phosphorus fertiliser rates in 
different phosphorus-tolerance cultivars of rice. P0 – no phosphorus application; P1 – 0.44 g/pot; P2 – 0.88 g/pot; 
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et al. 2024). However, few studies have investigated 
the effects of combined phosphorus application rates 
and different phosphorus-tolerant cultivars on the 
grain yield of rice, the activity of starch-metabolising 
enzyme at the grain-filling stage, leaf senescence 
characteristics, and their relationship, especially in 
the phosphorus-deficient soil. The present results 
showed that the grain yield of rice initially increased 
and then decreased with increasing phosphorus 
application rate (Table 1). The suitable phosphorus 
application rates for cv. Lianjing 7 and cv. Yongyou 
2640 were 0.88 and 0.44 g/pot, respectively. Total 
spikelets and filled-grain rate improved after suitable 
phosphorus application, resulting in a consider-
able yield increase. This finding is similar to that of 
Massawe et al. (2017), who observed that increased 

grain yield was partly due to the large spikelet num-
ber and high grain-filling rate. The possible reasons 
were improved soil environment of the rice roots, 
root activity, and nutrient absorption and utilisation 
by root. In addition, the relationship between source 
and sink becomes increasingly coordinated after the 
application of phosphorus fertiliser, which ultimately 
increases grain yield (Alkahtani et al. 2020, Zhang 
et al. 2021, Prodhan et al. 2022, Sun et al. 2023, 
Zhang et al. 2023, Yuan et al. 2024, Sun et al. 2024). 
Meanwhile, low phosphorus application considerably 
reduces rice yield by inhibiting each yield component. 
The grain yields of different phosphorus-tolerant 
cultivars considerably increased after the P1 treat-
ment relative to those obtained without phosphorus 
application. The increase in the yield of the cultivar 

Figure 9. Relationship between adenosine diphosphate glucose pyrophosphorylase (AGPase) activity, sucrose 
synthase (SuSase)activity in superior and inferior grains, photosynthetic rate, soil and plant analyser develop-
ment (SPAD) value, malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT) enzyme 
activities in rice leaves and grain yield, grain weight, grain filling rate of different phosphorus-tolerance rice. 
* and ** indicate F-values significance at P < 0.05 and P < 0.01; ns – not significant at P = 0.05; YLD – yield; 
GW-S – grain weight of superior grains; Gmax-S – maximum grain filling rate of superior grains; Gmean-S – 
mean grain filling rate of superior grains; GW-I – grain weight of inferior grains; Gmax-I – maximum grain 
filling rate of inferior grains; Gmean-I – mean grain filling rate of inferior grains
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with strong low-phosphorus tolerance was higher than 
that of the variety with weak low-phosphorus toler-
ance, indicating that low phosphorus application had 
a relatively small effect on the former. Consequently, 
the rational application of phosphorus fertiliser can 
increase yield and ensure the efficient utilisation 
of phosphorus fertiliser by different rice cultivars 
in different planting environments. Notably, this 
method can conserve phosphorus fertilisers.

Effects of phosphorus application rates on the 
grain-filling characteristics of different phospho-
rus-tolerant rice cultivars. Grain filling is an im-
portant physiological process that determines grain 
weight and is closely related to grain yield (Parida et 
al. 2022, Farooq et al. 2022, Ma et al. 2023, Zeng et 
al. 2024). The process is actually starch accumula-
tion. AGPase and SuSase are the two key enzymes in 
starch synthesis, and their activity is closely related 
to the filling rate in developing rice grains (Yang 
et al. 2004, Wenting et al. 2020, Wang et al. 2021, 
Tong et al. 2022, Chen et al. 2023, Yu et al. 2024). 
Our results indicated that increasing the applica-
tion of phosphorus fertiliser enhanced the filling 
rate of the superior and inferior grains, promoting 
grain weight and ultimately enhancing grain yield. 
However, the excessive application of phosphorus 
(1.32 g/pot) reduced the maximum filling rate, aver-
age filling rate, and grain weight (Figures 1 and 2). 
This result indicated that the maximum filling rate and 
grain weight of cv. Lianjing 7 was optimal after the P2 
treatment and cv. Yongyou 2640 after the P1 treatment. 
Appropriate-phosphorus application increased the 
activity of ribulose diphosphate carboxylase in leaves, 
sucrose phosphate synthase in stems, and related en-
zymes in grains and thus increased the leaf area index 
of plants; thus, it is conducive to photosynthesis and 
grain yield during the grain-filling stage of rice (Yu 
et al. 2024). Meanwhile, AGPase and SS activity in 
the grains were enhanced after suitable phosphorus 
application in cv. Lianjing 7 and cv. Yongyou 2640, 
as indicated by the increased grain-filling rate and 
grain weight (Figures 4 and 5). Correlation analysis 
confirmed these results (Figure 9), which were similar 
to those of Zang (2024), who observed that AGPase, 
StSase, and SBE activity promoted grain filling, in-
creased grain weight by 7.5%, and increased yield 
(Zang et al. 2024).

Generally, the earlier flowering glumes in the upper 
part of rice panicles are considered superior grains, 
whereas the latter are considered inferior grains. 
Superior grains have higher grain-filling rates and 

grain weight (Zhao et al. 2020, Dou et al. 2021, Lu et 
al. 2022, Chen et al. 2023, Panigrahi et al. 2023). Our 
results indicated that the maximum and average grain 
filling rates of cv. Yongyou 2640 superior grains were 
higher than those of cv. Lianjing 7. The underlying 
reasons can be elucidated as follows: cv. Lianjing 7 
had lower physiological activity, lower SPAD value, 
and faster leaf senescence characteristics in the early 
stage of grain filling in grains (Figures 3, 6 and 8). 
These features limited the grain-filling rate of the 
grains (Zhang et al. 2021, Panigrahi et al. 2023, Zhang 
et al. 2024). Meanwhile, insufficient photosynthetic 
assimilation was considered the main reason for the 
limited filling rate of the inferior grains (Yin et al. 
2022, Zhang et al. 2024). In addition, the expression 
levels of AGPS2b, SSS1, GBSS1, and GBSE11b genes 
were inhibited, and thus, the activity of key enzymes 
in the sucrose-starch metabolic pathway decreased 
at the grain-filling stage (Iqbal et al. 2021). Therefore, 
selecting suitable varieties in production, coordinat-
ing the growth between superior and inferior grains 
through the regulation of starch-related enzyme activ-
ity, and improving the maximum and average grain 
filling rates will increase grain weight and rice yield.

Effect of phosphorus fertiliser rates on the leaf 
senescence characteristics of different phospho-
rus-tolerant rice cultivars. Excessive ROS generated 
by abiotic stress can be oxidised into lipids, proteins, 
and nucleic acids, including the excessive oxidation of 
chloroplast thylakoid membranes, leading to severe 
structural and functional damage in crops (Raza et 
al. 2022, Liang et al. 2023). To protect themselves 
against the harmful effects of ROS, plants typically 
boost the antioxidant defence systems, including 
enzymatic and nonenzymatic systems, and thereby 
eliminate harmful substances, such as CAT, POD, 
SOD, glutathione peroxidase, and ascorbate peroxi-
dase (Cao et al. 2017, Liang et al. 2023, Averill-Bates 
2024). The present results indicated that the SOD 
and CAT activity in the leaves remarkably increased, 
whereas the MDA content decreased with increasing 
phosphorus fertiliser rate (Figures 5–7). Our results 
also demonstrated that the highest levels of antioxi-
dant enzymes were obtained at suitable phosphorus 
application rates of 0.88 g/pot for cv. Lianjing 7 and 
0.44 g/pot for cv. Yongyou 2640, which delayed the 
senescence of plants, prolonged the photosynthesis 
period and facilitated grain filling and yield formation. 
Correlation analysis supported these results (Figure 9). 
The present results were consistent with those of Dang 
et al. (2023), who found that an appropriate amount 
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of phosphate fertiliser can alleviate damage to plants 
caused by stress conditions and reduce the content 
of MDA (Dang et al. 2023). However, the excessive 
use of phosphorus fertiliser can inhibit the activity 
of antioxidant enzymes and increase the content of 
MDA. The possible mechanism was that an appro-
priate amount of phosphorus fertiliser promoted 
the antioxidant defence systems and accelerated the 
clearance of free radicals, but high concentrations 
of phosphorus can actually lead to lipid membrane 
peroxidation in crop cells and exacerbate damage 
to plants (Barbhuiya et al. 2024, Huang et al. 2024). 
In our study, SOD and CAT activity in the leaves 
of cv. Yongyou 2640 were remarkably higher than 
those of cv. Lianjing 7, and MDA content was lower 
than that of cv. Lianjing 7 (Figures 5–7). The results 
indicated that cultivars with strong low-phosphorus 
tolerance can improve the antioxidant systems of 
crops and maintain vigorous physiological functions 
when subjected to abiotic stress. Therefore, selecting 
cultivars with strong low-phosphorus tolerance and 
the suitable application of phosphorus fertiliser can 
delay leaf senescence, improve leaf photosynthetic 
rate, optimise grain-filling rate characteristics, and 
thus promote grain weight and yield in production.

Correlation analysis demonstrated that increas-
es in photosynthetic rate, SPAD value, SOD and 
CAT activity in leaves, and sink activity, including 
starch synthesis, are essential to the enhancement 
of grain yield and grain-filling rate (Figure 9). The 
activity of starch-synthesising enzymes, including 
AGPase, SS, SBE, and antioxidant enzymes, are 
significantly positively correlated with grain filling 
and the formation of rice yield (Yang et al. 2018, 
Iqbal et al. 2021, Zhu et al. 2022, Liu et al. 2023, 
Zang et al. 2024). Therefore, parents with highly 
active starch-metabolising enzymes in grains, an-
tioxidant enzymes, and high photosynthetic rates 
in leaves are expected to generate high-yield rice 
cultivars. Furthermore, regulating and improving 
the activity of these enzymes and photosynthetic 
assimilation at the grain-filling stage with suitable 
phosphorus fertiliser rates and cultivars with strong 
low-phosphorus tolerance cultivar can improve 
grain filing rate and rice yield.
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