Plant Soil Environ., 2012, 58(10):435-440 | DOI: 10.17221/264/2012-PSE

The effect of risk elements in soil to nitric oxide metabolism in tobacco plants

D. Procházková1, D. Haisel1, D. Pavlíková2, R. Schnablová1, J. Száková2, R. Vytášek3, N. Wilhelmová1
1 Instituteof Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
2 Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
3 Department of Medical Chemistry and Biochemistry, Charles University, Prague, Czech Republic

We studied changes of endogenous nitric oxide content (NO) and of reactive nitrogen species metabolism in transgenic tobacco with prolonged life span (SAG) and in wild tobacco (WT) cultivated in the control and in the polluted soil. There was no difference in the metal accumulation between WT and SAG plants however SAG ones showed better ability to cope with risk elements, as they retained higher membrane stability index and chlorophyll content together with better photochemical efficiency and lower deepoxidation status. Risk elements induced higher NO production in the youngest leaves of both plant types. Low and middle leaves of both WT and SAG plants showed similar activities of nitrate reductase and nitrosoglutathione reductase. Increase of nitrotyrosine content in leaf soluble proteins suggests that risk elements induced nitrosative stress in both plant types.

Keywords: nitrate reductase; nitrosoglutathione reductase; nitrotyrosine; Nicotiana tabacum L.

Published: October 31, 2012  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Procházková D, Haisel D, Pavlíková D, Schnablová R, Száková J, Vytášek R, Wilhelmová N. The effect of risk elements in soil to nitric oxide metabolism in tobacco plants. Plant Soil Environ. 2012;58(10):435-440. doi: 10.17221/264/2012-PSE.
Download citation

References

  1. Barroso J.B., Corpas F.J., Carreras A., Rodríguez-Serrano M., Esteban F.J., Fernández-Ocaña A., Chaki M., Romero-Puertas M.C., Valderrama R., Sandalio L.M., del Río L.A. (2006): Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. Journal of Experimental Botany, 57: 1785-1793. Go to original source... Go to PubMed...
  2. Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. Go to original source...
  3. Broadley M.R., White P.J., Hammond J.P., Zelko I., Lux A. (2007): Zinc in plants. New Phytologist, 173: 677-702. Go to original source... Go to PubMed...
  4. Chaki M., Valderrama R., Fernández-Ocaña A.M., Carreras A., Gómez-Rodríguez M.V., Pedrajas J.R., Begara-Morales J.C., Sánchez-Calvo B., Luque F., Leterrier M., Corpas F.J., Barroso J.B. (2011): Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. Journal of Experimental Botany, 62: 1803-1813. Go to original source... Go to PubMed...
  5. Corpas F.J., Mounira C., Fernández-Ocaña A., Valderrama R., Palma J.M., Carreras A., Begara-Morales J.C., Airaki M., del Río L.A., Barroso J.B. (2008): Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant and Cell Physiology, 49: 1711-1722. Go to original source... Go to PubMed...
  6. Gaudinová A. (1990): The effect of cytokinins on nitrate reductase activity. Biologia Plantarum, 32: 89-96. Go to original source...
  7. Gautam M., Sengar R.S., Garg S.K., Sengar K., Chaudhary R. (2008): Effect of lead on seed germination, seedling growth, chlorophyll content and nitrate reductase activity in mung bean (Vigna radiata). Research Journal of Phytochemistry, 2: 61-68. Go to original source...
  8. Groppa M.D., Rosales E.P., Iannone M.F., Benavides M.P. (2008): Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry, 69: 2609-2615. Go to original source... Go to PubMed...
  9. Humbeck K., Quast S., Krupinska K. (1996): Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant, Cell and Environment, 19: 337-344. Go to original source...
  10. Huynh le N., Vantoai T., Streeter J., Banowetz G. (2005): Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin. Journal of Experimental Botany, 56: 1397-1407. Go to original source... Go to PubMed...
  11. Kaiser W.M., Weiner H., Kandlbinder A., Tsai C.-B., Rockel P., Sonoda M., Planchet E. (2002): Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. Journal of Experimental Botany, 53: 875-882. Go to original source... Go to PubMed...
  12. Lea P.J. (1999): Nitrate Assimilation. Wiley, London.
  13. Leterrier M., Chaki M., Airaki M., Valderrama R., Palma J.M., Barroso J.B., Corpas F.J. (2011): Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/ abiotic stress. Plant Signalling and Behaviour, 6: 789-793. Go to original source... Go to PubMed...
  14. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951): Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265-275. Go to original source...
  15. Merewitz E.B., Gianfagna T., Huang B. (2010): Effects of SAG12ipt and HSP18.2-ipt expression on cytokinin production, root growth, and leaf senescence in creeping bentgrass exposed to drought stress. Journal of the American Society for Horticultural Science, 135: 230-239. Go to original source...
  16. Merewitz E.B., Gianfagna T., Huang B. (2011): Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. Journal of Experimental Botany, 9: 1-23. Go to original source... Go to PubMed...
  17. Mobin M., Khan N.A. (2007): Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology, 164: 601-610. Go to original source... Go to PubMed...
  18. Marozkina N.V., Wei C., Yemen S., Wallrabe H., Nagji A.S., Liu L., Morozkina T., Jones D.R., Gaston B. (2012): S-nitrosoglutathione reductase in human lung cancer. American Journal of Respiratory Cell and Molecular Biology, 46: 63-70. Go to original source... Go to PubMed...
  19. Neill S.J., Desikan R., Hancock J.T. (2003): Nitric oxide signalling in plants. New Phytologist, 159: 11-35. Go to original source... Go to PubMed...
  20. Neuberg M., Pavlíková D., Pavlík M., Balík J. (2010): The effect of different nitrogen nutrition on proline and asparagine content in plant. Plant, Soil and Environment, 56: 305-311. Go to original source...
  21. Opdenakker K., Remans T., Keunen E., Vangronsveld J., Cuypers A. (2012): Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environmental and Experimental Botany, 83: 53-61. Go to original source...
  22. Procházková D., Haisel D., Wilhelmová N. (2008): Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span. Cell Biochemistry and Function, 26: 582-590. Go to original source... Go to PubMed...
  23. Radi R. (2004): Nitric oxide, oxidants, and protein tyrosine nitration. Proceedings of the National Academy of Sciences of the United States of America, 23: 4003-4008. Go to original source... Go to PubMed...
  24. Sairam R.K., Deshmukh P.S., Shukla D.S. (1997): Tolerance to drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. Journal of Agronomy and Crop Science, 178: 171-177. Go to original source...
  25. Valderrama R., Corpas F.J., Carreras A., Fernández-Ocaña A., Chaki M., Luque F., Gómez-Rodríguez M.V., Colmenero-Varea P., del Río L.A., Barroso J.B. (2007): Nitrosative stress in plants. FEBS Letters, 581: 453-461. Go to original source... Go to PubMed...
  26. Wilhelmová N., Fuksová H., Srbová M., Miková D., Mýtinová Z., Procházková D., Vytásek R., Wilhelm J. (2006): The effect of plant cytokinin hormones on the production of ethylene, nitric oxide, and protein nitrotyrosine in ageing tobacco leaves. BioFactors, 27: 203-211. Go to original source... Go to PubMed...
  27. Wilhelmová N., Procházková D., Šindelářová M., Šindelář L. (2005): Photosynthesis in leaves of Nicotiana tabacum L. infected with tobacco mosaic virus. Photosynthetica, 43: 597-602. Go to original source...
  28. Wilson I.D., Neill S.J., Hancock J.T. (2008): Nitric oxide synthesis and signalling in plants. Plant, Cell and Environment, 31: 622-631. Go to original source... Go to PubMed...
  29. Xiong J., Fu G., Tao L., Zhu C. (2010): Roles of nitric oxide in alleviating heavy metal toxicity in plants. Archives of Biochemistry and Biophysics, 497: 13-20. Go to original source... Go to PubMed...
  30. Xu Y., Tian J., Gianfagna T., Huang B. (2009): Effects of SAG12-ipt expression on cytokinin production, growth and senescence of creeping bentgrass (Agrostis stolonifer L.) under heat stress. Plant Growth Regulation, 57: 281-291. Go to original source...
  31. Žalud P., Száková J., Sysalová J., Tlustoš P. (2012): The effect of contaminated urban particulate matter on risk element contents in leafy vegetables. Central European Journal of Biology, 7: 519-530. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.