Plant Soil Environ., 2017, 63(5):207-212 | DOI: 10.17221/36/2017-PSE

Technological value of raw materials from sugar beet growing area fertilized with digestate from sugar beet pulp biogas plantOriginal Paper

Andrzej BARYGA*, Bożenna POŁEĆ, Ewelina MAŁCZAK
Sugar Department, Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Leszno, Poland

The purpose of the work was to study the suitability of residue obtained during the methane fermentation process of sugar beet pulp for agricultural use in sugar beet plantations. Studies were performed with the sugar beet pulp fermentation residue and sugar beets (Beta vulgaris cv. Fighter) harvested from experimental plots. It was found that the by-product of sugar beet pulp digestion may be utilized in agriculture taking into account its chemical and microbiological standards. The nutrients in digestion residue were as assimilable for sugar beet plants as the nutrients in mineral fertilizers. The evaluation of technological parameters of sugar beet harvested from experimental plots based on standard technological criteria showed that irrespective of fertilization treatment, the raw material obtained met most of the requirements and can be used as a stock material for sugar production.

Keywords: biogas residue; sugar beet fertilization; technological value of sugar beet; anaerobic digestion; utilization in agriculture

Published: May 31, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
BARYGA A, POŁEĆ B, MAŁCZAK E. Technological value of raw materials from sugar beet growing area fertilized with digestate from sugar beet pulp biogas plant. Plant Soil Environ. 2017;63(5):207-212. doi: 10.17221/36/2017-PSE.
Download citation

References

  1. Artyszak A., Gozdowski D., Kucińska K. (2014): The yield and technological quality of sugar beet roots cultivated in mulches. Plant, Soil and Environment, 60: 464-469. Go to original source...
  2. Bachmann S., Gropp M., Eichler-Löbermann B. (2014): Phosphorus availability and soil microbial activity in a 3 year field experiment amended with digested dairy slurry. Biomass and Bioenergy, 70: 429-439. Go to original source...
  3. Baryga A., Połeć B., Szymański T., Wołyńska W. (2015): The influence of corn fertilization with beet pulp residue after fermentation on the biomass growth and energy value. Postępy Nauki i Technologii Przemysłu Rolno-Spożywczego, 70: 36-52.
  4. Berruto R., Busato P., Bochtis D.D., Sorensen C.G. (2013): Comparison of distribution systems for biogas plant residual. Biomass and Bioenergy, 52: 139-150. Go to original source...
  5. Brooks L., Parravicini V., Svardal K., Kroiss H., Prendl L. (2008): Biogas from sugar beet press pulp as substitute of fossil fuel in sugar beet factories. Water Science and Technology, 58: 1497-1504. Go to original source... Go to PubMed...
  6. Butwiłowicz A., Książek D., Ogłaza I., Waleriańczyk E. (1990): Bulletin of Sugar Technicians Associacion (STC) 10/817. Warszawa, Association of Sugar Technicians, 8-18. (In Polish)
  7. Chen R.R., Blagodatskaya E., Senbayram M., Blagodatsky S., Myachina O., Dittert K., Kuzyakov Y. (2012): Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass and Bioenergy, 45: 221-229. Go to original source...
  8. Cirne D.G., Lehtomäki A., Björnsson L., Blackall L.L. (2007): Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. Journal of Applied Microbiology, 103: 516-527. Go to original source... Go to PubMed...
  9. Filipović V., Radivojević S., Andrei J., Subić J., Ugrenović V. (2011): Non-sugar matter as an indicator of technological value in different sugar beet genotypes. African Journal of Biotechnology, 10: 15179-15183. Go to original source...
  10. Gunnarsson A., Lindén B., Gertsson U. (2011): Biodigestion of plant material can improve nitrogen use efficiency in a red beet crop sequence. HortScience, 46: 765-775. Go to original source...
  11. Hutnan M., Drtil M., Derco J., Mrafkova L., Hornak M., Mico S. (2001): Two-step pilot-scale anaerobic treatment of sugar beet pulp. Polish Journal of Environmental Studies, 10: 237-243.
  12. Khanna M., Dhungana B., Clifton-Brown J. (2008): Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass and Bioenergy, 32: 482-493. Go to original source...
  13. Lošák T., Hlušek J., Válka T., Elbl J., Vítěz T., Bělíková H., Von Bennewitz E. (2016): The effect of fertilisation with digestate on kohlrabi yields and quality. Plant, Soil and Environment, 62: 274-278. Go to original source...
  14. Lošák T., Zatloukalová A., Szostková M., Hlušek J., Fryč J., Vítěz T. (2011): Comparison of the effectiveness of digestate and mineral fertilisers on yields and quality of kohlrabi (Brassica oleracea, L.). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LIX: 117-122. Go to original source...
  15. Luste S., Luostarinen S. (2010): Anaerobic co-digestion of meatprocessing by-products and sewage sludge - Effect of hygienization and organic loading rate. Bioresource Technology, 101: 2657-2664. Go to original source... Go to PubMed...
  16. Massé D., Gilbert Y., Topp E. (2011): Pathogen removal in farmscale psychrophilic anaerobic digesters processing swine manure. Bioresource Technology, 102: 641-646. Go to original source... Go to PubMed...
  17. Möller K., Müller T. (2012): Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 12: 242-257. Go to original source...
  18. Murphy J.D., Power N. (2009): Technical and economic analysis of biogas production in Ireland utilising three different crop rotations. Applied Energy, 86: 25-36. Go to original source...
  19. Nges I.A., Björn A., Björnsson L. (2012): Stable operation during pilot-scale anaerobic digestion of nutrient-supplemented maize/sugar beet silage. Bioresource Technology, 118: 445-454. Go to original source... Go to PubMed...
  20. Nkoa R. (2014): Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agronomy for Sustainable Development, 34: 473-492. Go to original source...
  21. Połeć B., Baryga A., Szymański T., Wołyńska W., Toboła A. (2011): The possibility of producing biogas from sugar beet pulp in a methane fermentation process. Gazeta Cukrownicza, 4: 107-112. (In Polish)
  22. Radivojević S., Kabić D., Filipović V., Jaćimović G. (2008): Yield and technological quality of modern sugar beet varieties in the republic of Serbia. Food and Feed Research, 35: 53-58.
  23. Seppälä M., Paavola T., Lehtomäki A., Pakarinen O., Rintala J. (2008): Biogas from energy crops - Optimal pre-treatments and storage, co-digestion and energy balance in boreal conditions. Water Science and Technology, 58: 1857-1863. Go to original source... Go to PubMed...
  24. Strochalska B., Zimny L., Regiec P. (2014): Effect of different systems conservation tillage on technological value of sugar beet roots. Zeszyty Problemowe Postępów Nauk Rolniczych, 576: 151-160.
  25. Ziemiński K., Kowalska-Wentel M. (2015): Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse. Bioresource Technology, 180: 274-280. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.