Plant Soil Environ., 2021, 67(5):270-277 | DOI: 10.17221/445/2020-PSE

Biological nitrification inhibition and forage productivity of Megathyrsus maximus in Colombian dry tropicsOriginal Paper

Juliana Isabel Carvajal-Tapia ORCID...*,1, Sandra Morales-Velasco ORCID...1, Daniel M. Villegas ORCID...2, Jacobo Arango ORCID...2, Nelson Jose Vivas-Quila ORCID...1
1 Agricultural Nutrition Research Group, Faculty of Agricultural Sciences, University of Cauca, Popayán, Colombia
2 International Center for Tropical Agriculture (CIAT), Cali, Colombia

Agronomic, nutritional, and environmental aspects are integrated to promote sustainable tropical grassland production. Biological nitrification inhibition (BNI) is a plant-based strategy to improve nitrogen use efficiency by grasses in which they suppress the pace of soil nitrification via exudation of inhibitory compounds. To evaluate the effect of BNI on the productive performance of Megathyrsus maximus under field conditions, we evaluated a collection of 27 germplasm accessions and commercial cultivars of the forage grass in the dry tropics of Colombia. We measured plant yield dry matter, nutrition quality parameters, and nitrification rates of soil at 22 months after pasture establishment. Our results highlighted germplasm accessions of superior agronomic performance (for dry matter production and nutrition quality) and high capacity to decrease nitrification. Although no relation was observed between agronomic aspects, nutritional aspects, and nitrification rates, we conclude that there is no agronomic or nutritional penalty on environmentally friendly grasses, and BNI could be adopted as a target trait in plant breeding programs toward the development of eco-efficient forages and contribute to the sustainable intensification of livestock systems.

Keywords: Guinea grass; tropical agroecosystem; tropical forages; N uptake; environmental pollution

Published: May 31, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Carvajal-Tapia JI, Morales-Velasco S, Villegas DM, Arango J, Vivas-Quila NJ. Biological nitrification inhibition and forage productivity of Megathyrsus maximus in Colombian dry tropics. Plant Soil Environ. 2021;67(5):270-277. doi: 10.17221/445/2020-PSE.
Download citation

References

  1. Abalos D., van Groenigen J.W., de Deyn G.B. (2018): What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands? Global Change Biology, 24: e248-e258. Go to original source... Go to PubMed...
  2. Ashworth A.J., Weiss S.A., Keyser P.D., Allen F.L., Tyler D.D., Taylor A., Beamer K.P., West C.P., Pote D.H. (2016): Switchgrass composition and yield response to alternative soil amendments under intensified heat and drought conditions. Agriculture, Ecosystems and Environment, 233: 415-424. Go to original source...
  3. Barragán-Hernández W.A., Cajas-Girón Y.S. (2019): Bromatological and structural changes in Megathyrsus maximus in four silvopastoral arrangement systems. Ciencia y Tecnología Agropecuaria, 20: 231-258. Go to original source...
  4. Borrero Tamayo G.A., Jiménez J., Ricaurte J.J., Rivera M., Polanía J.A., Núñez J., Barbosa N., Arango J., Cardoso J.A., Rao I.M. (2017): Protocol Manual. Plant Nutrition and Physiology - Forages and Beans. Cali, Agrobiodiversity Research Area, International Center of Tropical Agriculture (CIAT), 186.
  5. Bowatte S., Hoogendoorn C.J., Newton P.C.D., Liu Y., Brock S.C., Theobald P.W. (2018): Grassland plant species and cultivar effects on nitrous oxide emissions after urine application. Geoderma, 323: 74-82. Go to original source...
  6. Butterbach-Bahl K., Baggs E.M., Dannenmann M., Kiese R., Zechmeister-Boltenstern S. (2013): Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Socociety B, 368: 2013.0122. Go to original source... Go to PubMed...
  7. Coskun D., Britto D.T., Shi W.M., Kronzucker H.J. (2017): Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants, 3: 17074. Go to original source... Go to PubMed...
  8. Dele P.A., Akinyemi B.T., Amole T.A., Okukenu O.A., Sangodele O.S., Sosande O.S., Olanite J.A., Arigbede O.M., Jolaosho A.O. (2017): Effect of manure type and season of harvest on the forage yield, quality and macro-elements of two Panicum maximum varieties. Nigerian Journal of Animal Science, 19: 265-282.
  9. Gaviria X., Naranjo J.F., Barahona R. (2015): In vitro fermentation kinetics of Leucaena leucocephala and Megathyrsus maximus and their mixtures, with or without energy supplementation. Pastos y Forrajes, 38: 55-63.
  10. Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J. (2013): Tackling climate change through livestock - A global assessment of emissions and mitigation opportunities. Rome, Food and Agriculture Organization of the United Nations.
  11. Hare M.D., Phengphet S., Songsiri T., Sutin N. (2015): Effect of nitrogen on yield and quality of Panicum maximum cv. Mombasa and Tanzania in Northeast Thailand. Tropical Grasslands, 3: 27. Go to original source...
  12. Lemaire G., Franzluebbers A., Carvalho P.C. de F., Dedieu B. (2014): Integrated crop-livestock systems: strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems and Environment, 190: 4-8. Go to original source...
  13. Lemaire G., Belanger G. (2020): Allometries in plants as drivers of forage nutritive value: a review. Agriculture, 10: 5. Go to original source...
  14. Li Y.Y., Chapman S.J., Nicol G.W., Yao H.Y. (2018): Nitrification and nitrifiers in acidic soils. Soil Biology and Biochemistry, 116: 290-301. Go to original source...
  15. Macedo V., Quadros Cunha A., Cândido E.P., Domingues F.N., Melo D. de M., Rêgo A.C. do. (2017): Structure and productivity of tanzania grass subjected to different defoliation frequencies. Ciênc Anim Bras, 18. Go to original source...
  16. Matínez-Mamian C., Vivas-Quila N.J., Morales-Velasco S. (2020): Agronomic response of forage mixtures in a silvopastoral system in the Colombian dry tropics. Dyna, 87: 80-84. Go to original source...
  17. Mazabel J., Worthington M., Castiblanco V., Peters M., Arango J. (2020): Using near infrared reflectance spectroscopy for estimating nutritional quality of Brachiaria humidicola in breeding selections. Agrosystems, Geosciences and Environment, 3: e20070. Go to original source...
  18. Mwendia S.W., Maass B., Njenga D., Notenbaert A. (2019): Perennial ryegrass and novel festulolium forage grasses in the tropical highlands of Central Kenya: preliminary assessment. Tropical Grasslands-Forrajes Tropicales, 7: 234-243. Go to original source...
  19. Molano M.L., Cortés M.L., Ávila P., Martens S.D., Muñoz L.S. (2016): Near infrared spectroscopy (NIRS) calibration equations to predict nutritional quality parameters of tropical forages. Tropical Grasslands-Forrajes Tropicales, 4: 139. Go to original source...
  20. Morales-Velasco S., Vivas-Quila N.J., Teran-Gómez V.F. (2016): Livestock eco - efficient and adaptation to climate change. Biotecnología en el Sector Agropecuario y Agroindustrial, 14: 135-144.
  21. Nakamura S., Saliou P.S., Takahashi M., Ando Y., Subbarao G.V. (2020): The contribution of root turnover on biological nitrification inhibition and its impact on the ammonia-oxidizing archaea under Brachiaria cultivations. Agronomy, 10: 1003. Go to original source...
  22. Nicol G.W., Leininger S., Schleper C., Prosser J.I. (2008): The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology, 10: 2966-2978. Go to original source... Go to PubMed...
  23. Nuñez J., Arevalo A., Karwat H., Egenolf K., Miles J., Chirinda N., Cadisch G., Rasche F., Rao I., Subbarao G., Arango J. (2018): Biological nitrification inhibition activity in a soil-grown biparental population of the forage grass, Brachiaria humidicola. Plant and Soil, 426: 401-411. Go to original source...
  24. Pariasca Tanaka J., Nardi P., Wissuwa M. (2010): Nitrification inhibition activity, a novel trait in root exudates of rice. AoB PLANTS, 2010: 14. Go to original source... Go to PubMed...
  25. Portador García T. de J. (2020): The challenges of human security in the face of climate change. Relaciones Internacionales, 43: 189‒207.
  26. Rao I.M., Peters M., Castro A., Schultze-Kraft R., White D., Fisher M., Rudel T. (2015): LivestockPlus - the sustainable intensification of forage-based agricultural systems to improve livelihoods and ecosystem services in the tropics. Tropical Grasslands-Forrajes Tropicales, 3: 59-82. Go to original source...
  27. Rivera-Herrera J.E., Molina-Botero I., Chará-Orozco J., Murgueitio-Restrepo E., Barahona-Rosales R. (2017): Intensive silvopastoral systems with Leucaena leucocephala (Lam.) de Wit: productive alternative in the tropic in view of the climate change. Pastos y Forrajes, 40: 171-183.
  28. Sakita G.Z., Bompadre T.F.V., Dineshkumar D., Lima P. de M.T., Filho A.L.A., Campioni T.S., Neto P. de O., Neto H.B., Louvandini H., Abdalla A.L. (2020): Fibrolytic enzymes improving in vitro rumen degradability of tropical forages. Journal of Animal Physiology and Animal Nutrition, 104: 1267-1276. Go to original source... Go to PubMed...
  29. Santiago-Hernández F., López-Ortiz S., Ávila-Reséndiz C., JarilloRodríguez J., Pérez-Hernández P., de Dios Guerrero-Rodríguez J. (2016): Physiological and production responses of four grasses from the genera Urochloa and Megathyrsus to shade from Melia azedarach L. Agroforestry Systems, 90: 339-349. Go to original source...
  30. Subbarao G.V., Ishikawa T., Ito O., Nakahara K., Wang H.Y., Berry W.L. (2006): A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant and Soil, 288: 101-112. Go to original source...
  31. Subbarao G.V., Rondon M., Ito O., Ishikawa T., Rao I., Nakahara K., Lascano C., Berry W.L. (2007): Biological nitrification inhibition (BNI) - is it a widespread phenomenon? Plant and Soil, 294: 5-18. Go to original source...
  32. Subbarao G.V., Rao I.M., Nakahara K., Sahrawat K.L., Ando Y., Kawashima T. (2013): Potential for biological nitrification inhibition to reduce nitrification and N2O emissions in pasture croplivestock systems. Animal: an International Journal of Animal Bioscience, 2: 322-332. Go to original source... Go to PubMed...
  33. Subbarao G.V., Yoshihashi T., Worthington M., Nakahara K., Ando Y., Sahrawat K.L., Braun H.J. (2015): Suppression of soil nitrification by plants. Plant Science, 233: 155-164. Go to original source... Go to PubMed...
  34. Toledo J., Schultze-Kraft R. (1982): Methodology for the agronomic evaluation of tropical forages. In: Toledo J.M. (ed.): Manual for agronomic evaluation. Red internacional de evaluación de patos tropicales - RIEPT (RIEPT is acronym from Spanish). Cali, Colombia, CIAT 07SG-1(82), 91-116.
  35. Van Man N., Wiktorsson H. (2003): Forage yield, nutritive value, feed intake and digestibility of three grass species as affected by harvest frequency. Tropical Grasslands, 37: 101-110.
  36. Villegas D., Arevalo A., Nuñez J., Mazabel J., Subbarao G., Rao I., De Vega J., Arango J. (2020): Biological nitrification inhibition (BNI): phenotyping of a core germplasm collection of the tropical forage grass Megathyrsus maximus under greenhouse conditions. Frontiers in Plant Science, 11: 820. Go to original source... Go to PubMed...
  37. Vivas-Quila N.J., Carrillo S., Galindez J., Morales-Velasco S., Gutierrez-Solis J.F., Peters M. (2015): Evaluation of the establishment of livestock feed association for tropical American system ID310 in Pastoralism and forage systems - Posters. Bonn, 239.
  38. Vivas-Quila N.J., Morales-Velasco S., Gutierrez-Solis J.F., Peters M., Alban N., Arango J., Hincapié B. (2017): Biological Nitrification Inhibition (BNI) in three livestocks systems in Colombia (0031). Conference on greenhouse gases in systems farmers in Latin America, Uruguay, October 4-16.
  39. Yang S., Zhao W.W., Pereira P. (2020): Determinations of environmental factors on interactive soil properties across different land-use types on the Loess Plateau, China. Science of The Total Environment, 738: 140270. Go to original source... Go to PubMed...
  40. Zhang Q.P., Bell L.W., Shen Y.Y., Whish J.P.M. (2018): Indices of forage nutritional yield and water use efficiency amongst springsown annual forage crops in north-west China. European Journal of Agronomy, 93: 1-10. Go to original source...
  41. Zu Ermgassen K.H.J., de Alcântara M.P., Balmford A., Barioni L., Neto F.B., Bettarello M.M.F., de Brito G., Carrero G.C., Florece E. de A.S., Gonçalves E.T., da Luz C.T., Mallman G.M., Strassburg B.B.N., Valentim J.F., Latawiec A. (2018): Results from onthe-ground efforts to promote sustainable cattle ranching in the Brazilian Amazon. Sustainability, 10: 1301. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.