Plant Soil Environ., 2024, 70(12):739-750 | DOI: 10.17221/416/2024-PSE
Agricultural waste-based lactic acid production by the fungus Rhizopus oryzae: a tool for sustainable polylactic acid production for agricultural use – a reviewReview
- 1 Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- 2 Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
Lactic acid has gained considerable attention globally due to its multi-purpose application. Commercial lactic acid production uses the fungal species Rhizopus oryzae, which produces other organic acids. A crucial point of effective fungal organic acid production is matching the fungal strains’ requirements, where the carbon source plays a major role. The highest production rate is achieved when glucose is used as a carbon source. Alternatively, we can apply carbon-rich agricultural residues as carbon sources. Using agricultural waste for lactic acid production provides a sustainable and cost-effective feedstock but also helps to reduce greenhouse gas emissions by diverting waste from landfills and decreasing reliance on fossil fuels. Moreover, polylactic acid (PLA) produced from lactic acid monomers can occur in numerous agricultural applications. We should delve deeper into sustainable methods of using carbon residues to recycle waste, foster the circular economy, and advance sustainable agriculture. Therefore, there is a need for further research on the commercial use of agricultural and food industry wastes for lactic acid production.
Keywords: biochemical process; biotechnology; fungi; organic acids
Received: August 1, 2024; Revised: September 12, 2024; Accepted: October 9, 2024; Prepublished online: November 8, 2024; Published: November 20, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Acedos M.G., Gomez-Perez P., Espinosa T., Abarca C., Ibanez B., Ruiz B. (2022): New efficient meta-fermentation process for lactic acid produc-tion from municipal solid waste. Microbial Cell Factories, 21: 233.
Go to original source...
Go to PubMed...
- Ajala E.O., Ajala M.A., Onoriemu O.O., Akinpelu S.G., Bamidele S.H. (2021): Lactic acid production: utilization of yam peel hydrolysate as a substrate using Rhizopus orysae in kinetic studies. Biofuels, Bioproducts and Biorefining, 15: 1031-1045.
Go to original source...
- Akoetey W., Morawicki R. (2018): The effect of adaptation of Lactobacillus amylovorus to increasing concentrations of sweet potato starch on the production of lactic acid for its potential use in the treatment of cannery waste. Journal of Environmental Science and Health Part B - Pesticides Food Contaminants and Agricultural Wastes, 53: 802-809.
Go to original source...
Go to PubMed...
- Ali W., Ali H., Gillani S., Zinck P., Souissi S. (2023): Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. Environmental Chemistry Letters, 21: 1761-1786.
Go to original source...
- Alori E.T., Glick B.R., Babalola O.O. (2017): Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8: 971.
Go to original source...
Go to PubMed...
- Arrieta M.P., López J., Rayón E., Jiménez A. (2014): Disintegrability under composting conditions of plasticized PLA-PHB blends. Polymer Degra-dation and Stability, 108: 307-318.
Go to original source...
- Aziman S.N., Tumari H.H., Zain N.A.M. (2015): Determination of lactic acid production by Rhizopus oryzae in solid state fermentation of pineap-ple waste. Jurnal Teknologi, 77: 95-102.
Go to original source...
- Azmi A.S., Yusuf N., Jimat D.N., Puad N.I.M. (2016): Co-production of lactic acid and ethanol using Rhizopus sp. from hydrolyzed inedible cassa-va starch and leaves. IIUM Engineering Journal, 17: 1-10.
Go to original source...
- Bai D.M., Li S.Z., Liu Z.L., Cui Z.F. (2008): Enhanced L(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydroly-sate. Applied Biochemistry and Biotechnology, 144: 79-85.
Go to original source...
Go to PubMed...
- Behrooz R., Ghazanfari D., Rastakhiz N., Sheikhhosseini E., Ahmadi S.A. (2023): Green synthesis of polylactic acid/Fe3O4@β-cyclodextrin nano-fibrous nanocomposite loaded with Ferulago angulata extract as a novel nano-biosorbent: evaluation of diazinon removal and antibacterial ac-tivity. Iranian Journal of Biotechnology, 21: e3682.
- Botero-Valencia J.S., Mejia-Herrera M., Pearce J.M. (2022): Design and implementation of 3-D printed radiation shields for environmental sen-sors. HardwareX, 11: e00267.
Go to original source...
Go to PubMed...
- Bulut S., Elibol M., Ozer D. (2009): Optimization of process parameters and culture medium for L(+)-lactic acid production by Rhizopus oryzae. Journal of Chemical Engineering of Japan, 42: 589-595.
Go to original source...
- Cacciotti I., Mori S., Cherubini V., Nanni F. (2018): Eco-sustainable systems based on poly (lactic acid), diatomite and coffee grounds extract for food packaging. International Journal of Biological Macromolecules, 112: 567-575.
Go to original source...
Go to PubMed...
- Cantabrana I., Perise R., Hernández I. (2015): Uses of Rhizopus oryzae in the kitchen. International Journal of Gastronomy and Food Science, 2: 103-111.
Go to original source...
- Cao Q., Zhang W., Lian T., Wang S., Yin F., Zhou T., Zhang H., Zhu J., Dong H. (2022): Roles of micro-aeration on enhancing volatile fatty acids and lactic acid production from agricultural wastes. Bioresource Technology, 347: 126656.
Go to original source...
Go to PubMed...
- Chen X., Wang X., Xue Y., Zhang T.A., Li Y., Hu J., Tsang Y.F., Zhang H., Gao M.T. (2018): Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae. Journal of Bioscience and Bioengineering, 125: 703-709.
Go to original source...
Go to PubMed...
- Coban H.B., Demirci A. (2016): Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production. Bioprocess and Biosystems Engineering, 39: 323-330.
Go to original source...
Go to PubMed...
- Cui Y., Liu R., Xu L., Zheng W., Sun W. (2018): Fermentation kinetics of enzymatic hydrolysis bagasse solutions for producing L-lactic acid. Sugar Tech, 20: 364-370.
Go to original source...
- Das R.K., Brar S.K., Verma M. (2015): A fermentative approach towards optimizing directed biosynthesis of fumaric acid by Rhizopus oryzae 1526 utilizing apple industry waste biomass. Fungal Biology, 119: 1279-1290.
Go to original source...
Go to PubMed...
- Devassine M., Henry F., Guerin P., Briand X. (2002): Coating of fertilizers by degradable polymers. International Journal of Pharmaceutics, 242: 399-404.
Go to original source...
Go to PubMed...
- Dhandapani B., Vishnu D., Murshid S., Prasath A.R., Muruganandh R., Prasanth D., Sekar S., Senthilkumar K. (2021): Production of lactic acid from industrial waste paper sludge using Rhizopus oryzae MTCC5384 by simultaneous saccharification and fermentation. Chemical Engineer-ing Communications, 208: 822-830.
Go to original source...
- Di Lonardo D.P., van der Wal A., Harkes P., de Boer W. (2020): Effect of nitrogen on fungal growth efficiency. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 154: 433-437.
Go to original source...
- Dörsam S., Fesseler J., Gorte O., Hahn T., Zibek S., Syldatk C., Ochsenreither K. (2017): Sustainable carbon sources for microbial organic acid production with filamentous fungi. Biotechnology for Biofuels, 10: 1-12.
Go to original source...
Go to PubMed...
- Dulf E.H., Vodnar D.C., Dulf F.V. (2018): Modeling tool using neural networks for L(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol. Chemistry Central Journal, 12: 124.
Go to original source...
Go to PubMed...
- Eiteman M.A., Ramalingam S. (2015): Microbial production of lactic acid. Biotechnology Letters, 37: 955-972.
Go to original source...
Go to PubMed...
- Ezeilo U.R., Wahab R.A., Mahat N.A. (2020): Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renewable Energy, 156: 1301-1312.
Go to original source...
- França D.C., Almeida T.G., Abels G., Canedo E.L., Carvalho L.H., Wellen R.M.R., Haag K., Koschek K. (2019): Tailoring PBAT/PLA/Babassu films for suitability of agriculture mulch application. Journal of Natural Fibers, 16: 933-943.
Go to original source...
- Garg N., Hang Y.D. (1995): Microbial-production of organic acids from carrot processing waste. Journal of Food Science and Technology-Mysore, 32: 119-121.
- Ge C.M., Shen S.G., Zhang J., Liu X.W., Wu K., Pan R.R., Cai J.M. (2008): Bioconversion from sweet potato scum to L-lactic acid by Rhizopus oryzae. In: Nelles M., Cai J.M., Wu K. (eds.): Proceedings of the 2nd International Conference on Asian-European Environmental Technology and Knowledge Transfer, Hefei, 477-478.
- Göçeri A., Alma M.H., Gezginç Y., Karaoğul E. (2021): The effect of some parameters on the production of L(+)-lactic acid using wheat wastewater by Rhizopus oryzae NRRL-395. Kahramanmaraş Sütçü İmam Üniversitesi Tarim ve Doğa Dergisi, 24: 293-298.
Go to original source...
- Groff M.C., Scaglia G., Gaido M., Kassuha D., Ortiz O.A., Noriega S.E. (2022): Kinetic modeling of fungal biomass growth and lactic acid produc-tion in Rhizopus oryzae fermentation by using grape stalk as a solid substrate. Biocatalysis and Agricultural Biotechnology, 39: 102255.
Go to original source...
- Guo Y., Yan Q., Jiang Z., Teng C., Wang X. (2010): Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18. Journal of Industrial Microbiology and Biotechnology, 37: 1137-1143.
Go to original source...
Go to PubMed...
- Herman L., Chemaly M., Cocconcelli P.S., Fernandez P., Klein G., Peixe L., Prieto M., Querol A., Suarez J.E., Sundh I., Vlak J., Correia S. (2019): The qualified presumption of safety assessment and its role in EFSA risk evaluations: 15 years past. FEMS Microbiology Letters, 366: fny260.
Go to original source...
- Hsieh J.C., Lin C.W., Lou C.W., Hsing W.H., Hsieh C.T., Kuo C.Y., Lin J.H. (2017): Geo-textiles for side slope protection: preparation and charac-teristics. Fibres and Textiles in Eastern Europe, 25: 102-107.
Go to original source...
- Huang L.P., Jin B., Lant P., Zhou J. (2003): Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhizopus arrhizus. Journal of Chemical Technology and Biotechnology, 78: 899-906.
Go to original source...
- Huang L.P., Dong T., Chen J.W., Li N. (2007): Biotechnological production of lactic acid integrated with fishmeal wastewater treatment by Rhizo-pus oryzae. Bioprocess and Biosystems Engineering, 30: 35-140.
Go to original source...
Go to PubMed...
- Huang L.P., Jin B., Lant P., Zhou J. (2005): Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochemical Engineering Journal, 23: 265-276.
Go to original source...
- Ibarruri J., Hernández I. (2018): Rhizopus oryzae as fermentation agent in food derived sub-products. Waste and Biomass Valorization, 9: 2107-2115.
Go to original source...
- Ibarruri J., Hernandez I. (2019): Valorization of cheese whey and orange molasses for fungal biomass production by submerged fermentation with Rhizopus sp. Bioprocess and Biosystems Engineering, 42: 1285-1300.
Go to original source...
Go to PubMed...
- Ji H., Abdalkarim S.Y.H., Chen X., Chen X., Lu W., Chen Z., Yu H.Y. (2024): Deep insights into biodegradability mechanism and growth cycle adaptability of polylactic acid/hyperbranched cellulose nanocrystal composite mulch. International Journal of Biological Macromolecules, 254: 127866.
Go to original source...
Go to PubMed...
- Jie L., Zhang Y.C. (2008): Comparison of L-lactic acid production by Bacillus coagulans and Rhizopus oryzae with fiber waste. In: Wang L., Ni Y., Hou Q., Liu Z. (eds.): Proceeding of Book A and B - Second International Papermaking and Environment Conference, China, 146-149.
- Jin B., Huang L.P., Lant P. (2003): Rhizopus arrhizus - a producer for simultaneous saccharification and fermentation of starch waste materials to L(+)-lactic acid. Biotechnology Letters, 25: 1983-1987.
Go to original source...
Go to PubMed...
- Jin B., Yin P., Ma Y., Zhao L. (2005): Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams. Journal of Industrial Microbiology and Biotechnology, 32: 678-686.
Go to original source...
Go to PubMed...
- Ju Z.C., Du X.F., Feng K., Li S.Z., Gu S.S., Jin D.C., Deng Y. (2021): The succession of bacterial community attached on biodegradable plastic mulches during the degradation in soil. Frontiers in Microbiology, 12: 785737.
Go to original source...
Go to PubMed...
- Kalayu G. (2019): Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 2019: e4917256.
Go to original source...
- Kale G., Kijchavengkul T., Auras R., Rubino M., Selke S.E., Singh S.P. (2007): Compostability of bioplastic packaging materials: an overview. Mac-romolecular Bioscience, 7: 255-277.
Go to original source...
Go to PubMed...
- Koutinas A.A., Malbranque F., Wang R., Campbell G.M., Webb C. (2007): Development of an oat-based biorefinery for the production of L(+)-lactic acid by Rhizopus oryzae and various value-added coproducts. Journal of Agricultural and Food Chemistry, 55: 1755-1761.
Go to original source...
Go to PubMed...
- Kozlovskiy R., Shvets V., Kuznetsov A. (2017): Technological aspects of the production of biodegradable polymers and other chemicals from renewable sources using lactic acid. Journal of Cleaner Production, 155: 157-163.
Go to original source...
- Li C.H., Moore-Kucera J., Miles C., Leonas K., Lee J., Corbin A., Inglis D. (2014): Degradation of potentially biodegradable plastic mulch films at three diverse U.S. locations. Agroecology and Sustainable Food Systems, 38: 861-889.
Go to original source...
- Lian T., Zhang W., Cao Q., Wang S., Dong H. (2020): Enhanced lactic acid production from the anaerobic co-digestion of swine manure with apple or potato waste via ratio adjustment. Bioresource Technology, 318: 124237.
Go to original source...
Go to PubMed...
- Londoño-Hernández L., Ramírez-Toro C., Ruiz H.A., Ascacio-Valdés J.A., Aguilar-Gonzalez M.A., Rodríguez-Herrera R., Aguilar C.N. (2017): Rhizopus oryzae - ancient microbial resource with importance in modern food industry. International Journal of Food Microbiology, 257: 110-127.
Go to original source...
Go to PubMed...
- Ma B., Lv X., He Y., Xu J. (2016): Assessing adsorption of polycyclic aromatic hydrocarbons on Rhizopus oryzae cell wall components with water-methanol cosolvent model. Ecotoxicology and Environmental Safety, 125: 55-60.
Go to original source...
Go to PubMed...
- Ma X., Gao M., Yin Z., Zhu W., Liu S., Wang Q. (2020): Lactic acid and animal feeds production from Sophora flavescens residues by Rhizopus oryzae fermentation. Process Biochemistry, 92: 401-408.
Go to original source...
- Maas R.H.W., Bakker R.R., Eggink G., Weusthuis R.A. (2006): Lactic acid production from xylose by the fungus Rhizopus oryzae. Applied Micro-biology and Biotechnology, 72: 861-868.
Go to original source...
Go to PubMed...
- Maraveas C. (2020): The sustainability of plastic nets in agriculture. Sustainability, 12: 3625.
Go to original source...
- Marták J., Schlosser ©., Sabolová E., Kriątofíková L., Rosenberg M. (2003): Fermentation of lactic acid with Rhizopus arrhizus in a stirred tank reactor with a periodical bleed and feed operation. Process Biochemistry, 38: 1573-1583.
Go to original source...
- Maslova O., Stepanov N., Senko O., Efremenko E. (2019): Production of various organic acids from different renewable sources by immobilized cells in the regimes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SFF). Bioresource Technology, 272: 1-9.
Go to original source...
Go to PubMed...
- Matsumoto M., Furuta H. (2018): In situ extractive fermentation of lactic acid by Rhizopus oryzae in an air-lift bioreactor. Chemical and Biochem-ical Engineering Quarterly, 32: 275-280.
Go to original source...
- Meussen B.J., de Graaff L.H., Sanders J.P.M., Weusthuis R.A. (2012): Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Applied Microbiology and Biotechnology, 94: 875-886.
Go to original source...
Go to PubMed...
- Miura S., Arimura T., Hoshino M., Kojima M., Dwiarti L., Okabe M. (2003): Optimization and scale-up of L-lactic acid fermentation by mutant strain Rhizopus sp. MK-96-1196 in airlift bioreactors. Journal of Bioscience and Bioengineering, 96: 65-69.
Go to original source...
Go to PubMed...
- Mladenovic D.D., Djukic-Vukovic A.P., Pejin J.D., Kocic-Tanackov S.D., Mojovic L.V. (2016): Opportunities, perspectives and limits in lactic acid production from waste and industrial by-products. Hemijska Industrija, 70: 435-449.
Go to original source...
- Muruke M.H.S., Hosea K.M., Pallangyo A., Heijthuijsen J.H.F.G. (2006): Production of lactic acid from waste sisal stems using a Lactobacillus isolate. Discovery and Innovation, 18: 5-10.
Go to original source...
- Narancic T., Verstichel S., Reddy Chaganti S., Morales-Gamez L., Kenny S.T., De Wilde B., Babu Padamati R., O'Connor K.E. (2018): Biode-gradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ-mental Science and Technology, 52: 10441-10452.
Go to original source...
Go to PubMed...
- Naude A., Nicol W. (2017): Fumaric acid fermentation with immobilised Rhizopus oryzae: quantifying time-dependent variations in catabolic flux. Process Biochemistry, 56: 8-20.
Go to original source...
- Panesar P.S., Kaur S. (2015): Utilisation of waste/by-products for lactic acid production. International Journal of Food Science and Technology, 50: 2143-2151.
Go to original source...
- Park E.Y., Anh P.N., Okuda N. (2004): Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae. Biore-source Technology, 93: 77-83.
Go to original source...
Go to PubMed...
- Paswan M., Prajapati V., Dholakiya B.Z. (2022): Optimization of biodegradable cross-linked guar-gum-PLA superabsorbent hydrogel formation employing response surface methodology. International Journal of Biological Macromolecules, 223: 652-662.
Go to original source...
Go to PubMed...
- Paul C.S., Mercl F., Száková J., Tejnecký V., Tlustoą P. (2021): The role of low molecular weight organic acids in the release of phosphorus from sewage sludge-based biochar. All Life, 14: 599-609.
Go to original source...
- Ranjit C., Srividya S. (2016): Lactic acid production from free and polyurethane immobilized cells of Rhizopus oryzae MTCC 8784 by direct hydrolysis of starch and agro-industrial waste. International Food Research Journal, 23: 2646-2652.
- Râpa M., Popa M.E., Cinelli P., Lazzeri A., Burnichi R., Mitelut A., Grosu E. (2011): Biodegradable alternative to plastics for agriculture application. Romanian Biotechnological Letters, 16: 59-64.
- Reid E.V., Samuelso M.B., Blanco-Canqui H., Drijber R., Kadoma I., Wortman S.E. (2022): Biodegradable and biobased mulch residues had lim-ited impacts on soil properties but reduced yield of the following crop in a low fertility soil. Renewable Agriculture and Food Systems, 37: 490-503.
Go to original source...
- Ren H.W., Li J.P., Zhang Y., Li Z.Z. (2014): Efficient production of lactic acid from distillers grains hydrolysates by Rhizopus oryzae CICC41411. Advanced Materials Research, 873: 689-696.
Go to original source...
- Richter D.D.B., Oh N.H., Fimmen R., Jackson J. (2007): The rhizosphere and soil formation. In: Cardon Z.G., Whitbeck J.L. (eds.): The Rhizo-sphere. Cambridge, Academic Press, 179-200.
Go to original source...
- Rivera A.M.P., Ramírez Toro C., Londoño L., Bolivar G., Ascacio J.A., Aguilar C.N. (2023): Bioprocessing of pineapple waste biomass for sustaina-ble production of bioactive compounds with high antioxidant activity. Journal of Food Measurement and Characterization, 17: 586-606.
Go to original source...
- Roa Engel C.A., Van Gulik W.M., Marang L., Van der Wielen L.A.M., Straathof A.J.J. (2011): Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae. Enzyme and Microbial Technology, 48: 39-47.
Go to original source...
Go to PubMed...
- Rodríguez-Torres M., Romo-Buchelly J., Orozco-Sánchez F. (2022): Effects of oxygen transfer rate on the L(+)-lactic acid production by Rhizopus oryzae NRRL 395 in stirred tank bioreactor. Biochemical Engineering Journal, 187: 108665.
Go to original source...
- Ruengruglikit C., Hang Y.D. (2003): L(+)-lactic acid production from corncobs by Rhizopus oryzae NRRL-395. LWT - Food Science and Tech-nology, 36: 573-575.
Go to original source...
- Ruiz-Lara A., Fierro F., Carrasco U., Oria J.A., Tomasini A. (2020): Proteomic analysis of the response of Rhizopus oryzae ENHE to pentachloro-phenol: understanding the mechanisms for tolerance and degradation of this toxic compound. Process Biochemistry, 95: 242-250.
Go to original source...
- Sadaf A., Kumar S., Nain L., Khare S.K. (2021): Bread waste to lactic acid: applicability of simultaneous saccharification and solid state fermenta-tion. Biocatalysis and Agricultural Biotechnology, 32: 101934.
Go to original source...
- Saito K., Hasa Y., Abe H. (2012): Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. Journal of Bioscience and Bioengi-neering, 114: 166-169.
Go to original source...
Go to PubMed...
- Salvanal L., Clementz A., Guerra L., Yori J.C., Romanini D. (2021): L-lactic acid production using the syrup obtained in biorefinery of carrot dis-cards. Food and Bioproducts Processing, 127: 465-471.
Go to original source...
- Scervino J.M., Mesa M.P., Della Mónica I., Recchi M., Sarmiento Moreno N., Godeas A. (2010): Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and Fertility of Soils, 46: 755-763.
Go to original source...
- Seglina D., Krasnova I., Heidemane G., Kampuse S., Dukalska L., Kampuss K. (2010): Packaging technology influence on the shelf life extension of fresh raspberries. In: Erkan M., Aksoy U. (eds.): Book Series. Acta Horticulturae, 877: 433-440.
Go to original source...
- Serna-Abascal C., Pérez-López A., Villaseñor-Perea C.A., Mancera-Rico A. (2022): Plastics alternative materials used in agriculture: a systematic review and bibliometric analysis. The Journal of Agricultural Sciences - Sri Lanka, 17: 122-147.
Go to original source...
- She Y.C., Qi X., Sun S.Y., Li Z.K. (2024): Biodegradable microplastics boost dissimilatory nitrate reduction to ammonium (DNRA) process con-tributing to ammonium nitrogen retention in farmland soils. Journal of Cleaner Production, 438: 140835.
Go to original source...
- Soccol C.R., Marin B., Raimbault M., Lebeault J.M. (1994): Potential of solid state fermentation for production of L(+)-lactic acid by Rhizopus oryzae. Applied Microbiology and Biotechnology, 41: 286-290.
Go to original source...
- Sun J., Zhu J., Li W. (2012): L(+)-lactic acid production by Rhizopus oryzae using pretreated dairy manure as carbon and nitrogen source. Biomass and Bioenergy, 47: 442-450.
Go to original source...
- Swetha T.A., Ananthi V., Bora A., Sengottuvelan N., Ponnuchamy K., Muthusamy G., Arun A. (2023): A review on biodegradable polylactic acid (PLA) production from fermentative food waste - its applications and degradation. International Journal of Biological Macromolecules, 234: 123703.
Go to original source...
Go to PubMed...
- Taherzadeh M.J., Fox M., Hjorth H., Edebo L. (2003): Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae. Bioresource Technology, 88: 167-177.
Go to original source...
Go to PubMed...
- Taib N.A.A.B., Rahman M.R., Huda D., Kuok K.K., Hamdan S., Bakri M.K.B., Julaihi M.R.M.B., Khan A. (2023): A review on poly lactic acid (PLA) as a biodegradable polymer. Polymer Bulletin, 80: 1179-1213.
Go to original source...
- Tan H., Zhang Y., Sun L., Sun Y., Dang H., Yang Y., Jiang D. (2021): Preparation of nano sustained-release fertilizer using natural degradable polymer polylactic acid by coaxial electrospinning. International Journal of Biological Macromolecules, 193: 903-914.
Go to original source...
Go to PubMed...
- Taskin M., Esim N., Ortucu S. (2012): Efficient production of L-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61. Food and Bioproducts Processing, 90: 773-779.
Go to original source...
- Taskin M., Ortucu S., Unver Y., Arslan N.P., Algur O.F., Saghafian A. (2013): L-lactic acid production by Rhizopus oryzae MBG-10 using starch-rich waste loquat kernels as substrate. Starch-Stärke, 65: 322-329.
Go to original source...
- Tay A., Yang S.T. (2002): Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnology and Bioengineering, 80: 1-12.
Go to original source...
Go to PubMed...
- Thompson A.A., Samuelson M.B., Kadoma I., Soto Cantu E., Drijber R., Wortman S.E. (2019): Degradation rate of bio-based agricultural mulch is influenced by mulch composition and biostimulant application. Journal of Polymers and the Environment, 27: 498-509.
Go to original source...
- Thongchul N., Navankasattusas S., Yang S.T. (2010): Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hy-drolysis. Bioprocess and Biosystems Engineering, 33: 407-416.
Go to original source...
Go to PubMed...
- Trakarnpaiboon S., Praneetrattananon S., Kitpreechavanich V. (2018): Simultaneous saccharification and fermentation of L(+)-lactic acid produc-tion from liquefied cassava starch by immobilized Rhizopus oryzae in a 3 L airlift fermenter. Chiang Mai Journal of Science, 45: 77-91.
- Trakarnpaiboon S., Srisuk N., Piyachomkwan K., Yang S.T., Kitpreechavanich V. (2017): L-lactic acid production from liquefied cassava starch by thermotolerant Rhizopus microsporus: characterization and optimization. Process Biochemistry, 63: 26-34.
Go to original source...
- Uyar G.E.O., Uyar B. (2023): Potato peel waste fermentation by Rhizopus oryzae to produce lactic acid and ethanol. Food Science and Nutrition, 11: 5908-5917.
Go to original source...
Go to PubMed...
- Uyar E.O., Hamamci H., Türkel S. (2010): Effect of different stresses on trehalose levels in Rhizopus oryzae. Journal of Basic Microbiology, 50: 368-372.
Go to original source...
Go to PubMed...
- Vodnar D.C., Dulf F.V., Pop O.L., Socaciu C. (2013): L(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol. Microbial Cell Factories, 12: 1-9.
Go to original source...
Go to PubMed...
- Wang P., Li J., Wang L., Tang M., Yu Z., Zheng Z. (2009): L(+)-lactic acid production by co-fermentation of glucose and xylose with Rhizopus oryzae obtained by low-energy ion beam irradiation. Journal of Industrial Microbiology and Biotechnology, 36: 1363.
Go to original source...
Go to PubMed...
- Wee Y.J., Kim J.N., Ryu H.W. (2006): Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology, 44: 163-172.
- Yin F.W., Sun X.L., Zheng W.L., Yin L.F., Lu X., Zhang Y.Y., Wang Y.F., Fu Y.Q. (2023): Development of a strategy for L-lactic acid production by Rhizopus oryzae using Zizania latifolia waste and cane molasses as carbon sources. Molecules, 28: 6234.
Go to original source...
Go to PubMed...
- Yin P., Nishina N., Kosakai Y., Yahiro K., Pakr Y., Okabe M. (1997): Enhanced production of L(+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. Journal of Fermentation and Bioengineering, 84: 249-253.
Go to original source...
- Yu M.C., Wang R.C., Wang C.Y., Duan K.J., Sheu D.C. (2007): Enhanced production of L(+)-lactic acid by floc-form culture of Rhizopus oryzae. Journal of the Chinese Institute of Chemical Engineers, 38: 223-228.
Go to original source...
- Yu R.C., Hang Y.D. (1989): Kinetics of direct fermentation of agricultural commodities to L(+)-lactic acid by Rhizopus oryzae. Biotechnology Letters, 11: 597-600.
Go to original source...
- Yuan W., Li S., Guan H., Zhang S., Zhang Y., Zhang M., Yu Y., Chen X. (2023): Preparation and properties of a novel biodegradable composite hydrogel derived from gelatin/chitosan and polylactic acid as slow-release N fertilizer. Polymers, 15: 997.
Go to original source...
Go to PubMed...
- Zain N.A.M., Aziman S.N., Suhaimi M.S., Idris A. (2021): Optimization of L(+)-lactic acid production from solid pineapple waste (SPW) by Rhizo-pus oryzae NRRL 395. Journal of Polymers and the Environment, 29: 230-249.
Go to original source...
- Zaveri A., Edwards J., Rochfort S. (2022): Production of primary metabolites by Rhizopus stolonifer, causal agent of almond hull rot disease. Mole-cules, 27: 7199.
Go to original source...
Go to PubMed...
- Zhang L., Sintim H.Y., Bary A.I., Hayes D.G., Wadsworth L.C., Anunciado M.B., Flury M. (2018): Interaction of Lumbricus terrestris with macro-scopic polyethylene and biodegradable plastic mulch. Science of the Total Environment, 635: 1600-1608.
Go to original source...
Go to PubMed...
- Zhang L., Li X., Yong Q., Yang S.T., Ouyang J., Yu S. (2016): Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae. Bioresource Technology, 203: 173-180.
Go to original source...
Go to PubMed...
- Zhao Z., Shao S., Liu N., Liu Q., Jacquemyn H., Xing X. (2021): Extracellular enzyme activities and carbon/nitrogen utilization in mycorrhizal fungi isolated from epiphytic and terrestrial orchids. Frontiers in Microbiology, 12: 787820.
Go to original source...
Go to PubMed...
- Zheng Y., Wang Y., Zhang J., Pan J. (2016): Using tobacco waste extract in pre-culture medium to improve xylose utilization for L-lactic acid pro-duction from cellulosic waste by Rhizopus oryzae. Bioresource Technology, 218: 344-350.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.