Plant Soil Environ., 2005, 51(1):1-11 | DOI: 10.17221/3549-PSE

Low-cost agricultural measures to reduce heavy metal transfer into the food chain - a review

M. Puschenreiter1, O. Horak2, W. Friesl2, W. Hartl3
1 Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Austria
2 Department of Environmental Research, ARC Seibersdorf Research GmbH, Austria
3 Ludwig Boltzmann Insitute for Organic Agriculture and Applied Ecology, Vienna,

Heavy metal contamination affects large areas of Europe and worldwide. Hot spots of pollution are located close to industrial sites, around large cities and in the vicinity of mining and smelting plants. Agriculture in these areas faces major problems due to heavy metal transfer into crops and subsequently into the food chain. This paper gives an overview on simple but effective countermeasures to reduce the transfer of heavy metals to edible parts of crops. Since crop species and varieties largely differ in their heavy metal uptake, choosing plants with low transfer factors (e.g., legumes, cereals) may reduce metal concentration in edible parts significantly. Cultivating crops with higher heavy metal uptake capacity, e.g., spinach or lettuce should be avoided. The application of soil amendments is another very effective measure to reduce the concentration of heavy metals in crops. Both organic (e.g., farmyard manure) and inorganic amendments (e.g., lime, zeolites, and iron oxides) were found to decrease the metal accumulation. Further effective methods to reduce metal transfer into food chain include crop rotation and cultivation of industrial or bio-energy crops. It is concluded that the methods presented here comprise several tools, which are easy to apply, and are effective to allow safe agriculture on moderately contaminated soils.

Keywords: heavy metals; soil contamination; agricultural soils; low metal uptake crops; soil amendments

Published: January 31, 2005  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Puschenreiter M, Horak O, Friesl W, Hartl W. Low-cost agricultural measures to reduce heavy metal transfer into the food chain - a review. Plant Soil Environ. 2005;51(1):1-11. doi: 10.17221/3549-PSE.
Download citation

References

  1. Abdel-Sabour M.F., Mortvedt J.J., Kelose J.J. (1988): Cadmium-zinc interactions in plants and extractable cadmium and zinc fractions in soil. Soil Science, 145: 424-431. Go to original source...
  2. Adriano D.C. (2001): Trace elements in the terrestrial environment. Springer, New York. Go to original source...
  3. Angelova V., Ivanova R., Delibaltova V., Ivanov K. (2004): Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Indian Crops Production, 19: 197-205. Go to original source...
  4. Badora A., Furrer G., Grünwald A., Schulin R. (1998): Immobilization of zinc and cadmium in polluted soils by polynuclear Al13 and Al-montmorillonite. Journal of Soil Contamination, 7: 573-588. Go to original source...
  5. Bingham F.T. (1979): Bioavailability of Cd to food crops in relation to heavy metal content of sludge-amended soil. Environmental Health Perspectives, 28: 39-43. Go to original source... Go to PubMed...
  6. Boisson J., Mench M., Vangronsveld J., Ruttens A., Kopponen P., De Koe T. (1999a): Immobilization of trace metals and arsenic by different soil additives: evaluation by means of chemical extractions. Communications in Soil Science and Plant Analysis, 30: 365-387. Go to original source...
  7. Boisson J., Ruttens A., Mench M., Vangronsveld J. (1999b): Evaluation of hydroxyapatite as metal immobilization soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation. Environmental Pollution, 104: 225-233. Go to original source...
  8. Börjesson P. (1999): Environmental effects of energy crop cultivation in Sweden - I: Identification and quantification. Biomass and Bioenergy, 16: 137-154. Go to original source...
  9. Brallier S., Harrison R.B., Henry C.L., Dongsen X. (1996): Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously. Water, Air and Soil Pollution, 86: 195-206. Go to original source...
  10. Brown K.W. (1997): Decontamination of polluted soils. In: Iskandar I.K., Adriano D.C. (eds.): Remediation of soils contaminated with metals. Advances in Environmental Sciences: 47-66.
  11. Brown S., Chaney R.L., Hallfrisch J.G., Xue Q. (2003): Effects of biosolids processing on lead bioavailability in urban soil. Journal of Environmental Quality, 32: 100-108. Go to original source... Go to PubMed...
  12. Brüne H. et al. (1984): Schwermetallgehalte hessischer Böden und das Aufnahmepotential verschiedener Pflanzenarten. Angewandte Botanik, 58: 11-20.
  13. Cataldo D.A., Garland T.R., Wildung R.E. (1983): Cadmium uptake kinetics in intact soybean plants. Plant Physiology, 73: 844-848. Go to original source... Go to PubMed...
  14. Chaney L.R., Bruins R.J.F., Baker D.E., Korcak R.F., Smith J.E., Cole D. (1987): Transfer of sludge applied trace elements to the food chain. In: Page A.L., Logan T.J., Ryan J.A. (eds.): Land application of sewage sludge: Food chain implications. Lewis Publishers Inc., Chelsea: 67-69. Go to original source...
  15. Chen Z.S., Lee G.J., Liu J.C. (2000): The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils. Chemosphere, 41: 235-242. Go to original source... Go to PubMed...
  16. Chlopecka A., Adriano D.C. (1996): Mimicked in-situ stabilization of metals in a cropped soil: bioavailability and chemical form of zinc. Environmental Science and Technology, 30: 3294-3303. Go to original source...
  17. Chlopecka A., Adriano D.C. (1997): Inactivation of metals in polluted soils using natural zeolite and apatite. In: Proceedings of the Extended Abstracts from the 4th International Conference on the Biogeochemistry of trace elements, Berkeley: 415.
  18. Choudhary M., Bailey L.D., Grant C.A. (1994): Effect of zinc on cadmium concentration in the tissue of durum wheat. Canadian Journal of Plant Science, 74: 549-552. Go to original source...
  19. Christensen T.H. (1984): Cadmium soil sorption at low concentrations. I.: Effect of time, cadmium load, pH and calcium. Water, Air and Soil Pollution, 21: 105-114. Go to original source...
  20. Conyers M.K. (2002): Liming and lime materials. In: Encyclopedia of soils science. DOI: 10.1081/E-ESS120001945, Marcel Dekker Inc., New York: 796-798.
  21. Cordovil C.M.S., Coutinho J.F., Neto M.M.P.M. (1999): Effect of lime on Cd and Pb uptake by sudangrass. In: Proceedings of the Extended Abstracts from the 5th International Conference on the Biogeochemistry of trace elements, Vienna: 548-549.
  22. Derome J., Saarsalmi A. (1999): The effect of liming and correction fertilisation on heavy metal and macronutrient concentrations in soil solution in heavy-metal polluted Scots pine stands. Environmental Pollution, 104: 249-259. Go to original source...
  23. Elliott H.A., Singer L.M. (1988): Effect of water treatment sludge on groth and elemental composition of tomato (Lycopersicon esculentum) shoots. Communications in Soil Science and Plant Analysis, 19: 345-354. Go to original source...
  24. Florijn P.J. (1993): Differential distribution of cadmium in lettuce (Lactuca sativa L.) and maize (Zea mays L.). [Ph.D. Thesis.] Wageningen.
  25. Friesl W., Horak O., Wenzel W. (2004): Immobilization of heavy metals in soils by the application of bauxite residues: pot experiments under field conditions. Journal of Plant Nutrition and Soil Science, 167: 54-59. Go to original source...
  26. Friesl W., Lombi E., Horak O., Wenzel W.W. (2003): Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. Journal of Plant Nutrition and Soil Science, 166: 191-196. Go to original source...
  27. Geebelen W., Vangronsveld J., Clijsters H. (1999): Lead immobilization in lead contaminated soils. In: Proceedings of the Extended Abstracts from the 5th International Conference on the Biogeochemistry of trace elements, Vienna: 1016-1017.
  28. Ghuman G.S., Sajwan K.S., Alva A.K. 1999: Remediation of an acid soil using hydroxyapatite and zeolites. In: Proceedings of the Extended Abstracts from the 5th International Conference on the Biogeochemistry of trace elements, Vienna: 1018-1019.
  29. Grant C.A., Bailey L.D. (1998): Nitrogen, phosphorus and zinc management effects on grain yield and cadmium concentration in two cultivars of durum wheat. Canadian Journal of Plant Science, 78: 63-70. Go to original source...
  30. Gworek B. et al. (1992): Lead inactivation in soils by zeolites. Plant and Soil, 143: 71-74. Go to original source...
  31. Hocking P.J., McLaughlin M.J. (2000): Genotypic variation in cadmium accumulation by seed of lineseed, and comparison with seeds of other crop species. Australian Journal of Agricultural Research, 51: 427-433. Go to original source...
  32. Horak O. (1976): Bestimmung von Blei und Cadmium in Getreide- und Grasproben aus verschiedenen Entfernungen von Autostraßen mit Hilfe der flammenlosen Atomabsorptions-Spektroskopie. Landwirtschaftliche Forschung, 29: 1-10.
  33. Isermann K., Karch P., Schmidt J.A. (1983): CadmiumGehalt des Erntegutes verschiedener Sorten mehrerer Kulturpflanzen bei Anbau auf stark mit Cadmium belasteten, neutralem Lehmboden. Landwirtschaftliche Forschung, 36: 283-294.
  34. John M.K. (1973): Cadmium uptake by eight food crops as influenced by various soil levels of cadmium. Environmental Pollution, 4: 7-15. Go to original source...
  35. Jones K.C., Johnston A.E. (1989): Cadmium in cereal grain and herbage from long-term experimental plots at Rothamsted, UK. Environmental Pollution, 57: 199-216. Go to original source... Go to PubMed...
  36. Kabata-Pendias A., Pendias H. (1992): Trace elements in soils and plants. 2nd ed. CRC Press, Boca Raton.
  37. Kloke A., Sauerbeck D.R., Vetter H. (1984): The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In: Changing metal cycles and human health. Springer, Berlin, Heidelberg, New York, Tokyo: 113-141. Go to original source...
  38. Knox A.S., Seaman J.C., Mench M.J., Vangronsveld J. (2001): Remediation of metal-and radionuclides-contaminated soils by in situ stabilization techniques. In: Iskandar I.K. (ed.): Environmental restauration of metals-contaminated soils. CRC Press LLC, Boca Raton, Florida: 21-60. Go to original source...
  39. Kurz H., Schulz R., Römheld V. (1999): Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants. Journal of Plant Nutrition and Soil Science, 162: 323-328. Go to original source...
  40. Lombi E., Zhao F.J., Wieshammer G., Zhang G., McGrath S.P. (2002): In situ fixation of metals in soil using bauxite residue: biological effects. Environmental Pollution, 118: 445-452. Go to original source... Go to PubMed...
  41. Lothenbach B., Furrer G., Scharli H., Schulin R. (1999): Immobilization of heavy metals by montmorillonite compounds: effect of ageing and subsequent acidification. Environmental Science and Technology, 33: 2945-2952. Go to original source...
  42. Lübben S. (1993): Vergleichende Untersuchungen zur Schwermetallaufnahme verschiedener Kulturpflanzen aus klärschlammgedüngten Böden und deren Prognose durch Bodenextraktion. [Ph.D. Thesis.] University of Göttingen.
  43. Machele B., Metz R., Bergmann H. (1993): Schwermetalltransferuntersuchungen an landwirtscha lichen und gärtnerischen Nutzpflanzen unter gleichen Anbaubedingungen. VDLUFA-Schri enreihe, 37: 579-582.
  44. MacLean A.J. (1976): Cadmium in different plant species and its availability in soils as influenced by organic matter and additions of lime, P, Cd and Zn. Canadian Journal of Soil Science, 56: 129-138. Go to original source...
  45. McGowen S.L., Basta N.T. (1999): Simulated in situ chemical immobilization of heavy metals in contaminated soil. In: Proceedings of the Extended Abstracts from the 5th International Conference on the Biogeochemistry of trace elements, Vienna: 356-357.
  46. McLaughlin M.J., Hamon R.E., Maier N.A., Correll R.L., Smart M.K., Grant C.D. (1998): In-situ immobilisation techniques to remediate cadmium-contaminated agricultural soils. In: Proceedings of the 6th International FZK/TNO Conference on Contaminated Soil, Edinburgh, UK: 453-460.
  47. Mench M. (1998): Cadmium availability to plants in relation to major long-term changes in agronomy systems. Agricultural Ecosystem of Environment, 67: 175-187. Go to original source...
  48. Mench M.J., Vangronsveld J., Lepp N.W., Edwards R. (1998): Physico-chemical aspects and efficiency of trace element immobilization by soil amendments. In: Vangronsveld J., Cunningham S.C. (eds.): In situ inactivation and phytorestauration of metals-contaminated soils. Landes Bioscience: 151-182. Go to original source...
  49. Mitchell P., Barr D. (1995): The nature and significance of public exposure to arsenic: a review of its relevance to South West England. Environmental Health Perspectives, 17: 57-82. Go to original source... Go to PubMed...
  50. Mönicke R., Klose R., Kurzer H.J. (1999): Nutzungsempfehlungen für Böden mit erhöhten Cd-, Pb- und As-Konzentrationen. In: 19. Arbeitstagung Mengenund Spurenelemente, Friedrich-Schiller-Universität, Jena: 488-492.
  51. Müller I., Pluquet E. (1997): Einfluß einer Fe-(Oxid)gabe auf die Cd-Verfügbarkeit eines kontaminierten Auenbodens. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 85: 311-314.
  52. Müller I., Pluquet E. (1999): Verminderung der Schwermetallmobilität in belasteten Böden durch eine Fe-Oxidgabe. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 91: 1301-1304.
  53. Narval R.P., Antil R.S., Gupta A.P. (1992): Soil pollution through industrial effluent and waste management. Journal of Soil Contamination, 1: 265-272. Go to original source...
  54. NATO/CCMS (2002): Evaluation of demonstrated and emerging technologies for the treatment and clean-up of contaminated land and groundwater. Pilot Study Report 1985-2002, 2001 Update. North Atlantic Treaty Organisation, EPA 542-C-02-001, CD-ROM.
  55. Oliver D.P., Hannam K.G., Tiller N.S., Wilhelm R.H., Merry R.H., Cozens G.D. (1994): The effects of zinc fertilization on cadmium concentration in wheat grain. Journal of Environmental Quality, 23: 705-711. Go to original source...
  56. Oliver D.P., Schultz J.E., Tiller K.G., Merry R.H. (1993): The effect of crop rotations and tillage practices on cadmium concentration in wheat grain. Australian Journal of Agricultural Research, 44: 1221-1234. Go to original source...
  57. Oliver D.P., Tiller K.G., Conyers K.M., Slattery W.J., Alston A.M., Merry R.H. (1996): Effectiveness of liming to minimise uptake of cadmium by wheat and barley grain grown in the field. Australian Journal of Agricultural Research, 47: 1181-1193. Go to original source...
  58. Oliver D.P., Wilhelm N.S., McFarlane J.D.M., Tiller K.G., Cozens G.D. (1997): Effect of soil and foliar applications of zinc on cadmium concentration in wheat grain. Australian Journal of Experimental Agriculture, 37: 677-681. Go to original source...
  59. Oste L., Roskam G., Bucker D., Lexmond T. (1999): Immobilization of heavy metals in contaminates soils: evaluation the use of synthetic zeolites. In: Proceedings of the Extended Abstracts from the 5th International Conference on the Biogeochemistry of trace elements, Vienna: 996-997.
  60. Page A.L., Logan T.J., Ryan J.A. (1987): Land application of sludge: Food chain implications. Lewis Publications, Chelsea.
  61. Puschenreiter M., Horak O. (2000): Influence of different soil parameters on the transfer factor soil to plant of Cd, Cu and Zn for wheat and rye. Bodenkultur, 51: 3-10.
  62. Rebedea I., Lepp N.W. (1994): The use of synthetic zeolites to reduce plant metal uptake and phytotoxicity in two polluted soils. In: Adriano D.C. (ed.): Biogeochemistry of trace elements. Science and Technology Letters, Northwood: 81-87.
  63. Rietz E., Sauerbeck D., Timmermann F., Lüders A. (1983): Pflanzenverfügbarkeit und Mobilität von Cadmium, Blei, Zink und Kupfer in Abhängigkeit von der Kalkung eines schwermetallverseuchten Bodens. Landwirtschaftliche Forschung, 36: 295-300.
  64. Sächsische Landesanstalt für Landwirtschaft (2003): Hinweise und Empfehlungen zum Umgang mit arsen- und schwermetallbelasteten landwirtscha lich und gärtnerisch genutzen Böden. h p://www.landwi rtscha.sachsen.de/lfl.
  65. Singh B.R., Narwal R.P. (1984): Plant availability of heavy metals in a sludge-treated soil: II. metal extractability compared with plant metal uptake. Journal of Environmental Quality, 13: 344-349. Go to original source...
  66. Singh B.R., Steinnes E. (1976): Uptake of trace elements by barley in Zn-polluted soils. II. Lead, Cd, mercury, selenium, arsenic, chromium and vanadium in barley. Soil Science, 121: 38-43. Go to original source...
  67. Stoeppler M. (1991): Cadmium. In: Merian E. (ed.): Metals and their compounds in the environment: Occurrence, analysis, and biological relevance. VCH, Weinheim: 803-851.
  68. Tiller K.G., Oliver D.P., McLaughlin M.J., Conyers M.K., Merry R.H., Naidu R. (1997): Managing cadmium contamination of agricultural land. In: Iskander I.K. (ed.): Remediation of soils contaminated by metals. Science and Technology Letters, Northwood: 225-255.
  69. Tlusto¹ P., Pavlíková D., Balík J., Száková J., Hanè A., Balíková M. (1998): The accumulation of arsenic and cadmium in plants and their distribution. Rostlinná Výroba, 44: 463-469. (In Czech)
  70. Tlusto¹ P., Vostal J., Száková J., Balík J. (1995): Direct and subsequent efficiency of selected measures on the Cd and Zn content in the biomass of spinach. Rostlinná Výroba, 41: 31-37. (In Czech)
  71. Tsalidas C.D., Dimoyiannis D., Samaras V. (1997): Effect of zeolite application and soil pH on cadmium sorption in soils. Communications in Soil Science and Plant Analysis, 28: 1591-1602. Go to original source...
  72. Vácha R., Podle¹áková E., Nĕmeèek J., Poláèek O. (2002): Immobilization of As, Cd, Pb and Zn in agricultural soils by the use of organic and inorganic additives. Rostlinná Výroba, 48: 335-342. Go to original source...
  73. Vlamis J., Williams D.E., Corey J.E., Page A.L., Ganje T.L. (1985): Zinc and cadmium uptake by barley in field plots fertilized seven years with urban and suburban sludge. Soil Science, 139: 81-87. Go to original source...
  74. Wagner G.J. (1993): Accumulation of Cd in crop plants and its consequences to human health. Advances in Agronomy, 51: 173-212. Go to original source...
  75. Wenzel W.W., Blum W.E.H., Brandstetter A., Jockwer F., Köchl A., Oberforster M., Oberländer H.E., Riedler C., Roth K., Vladeva I. (1996): Effects of soil properties and cultivar on cadmium accumulation in wheat grain. Zeitschrift für Pflanzenernährung und Bodenkunde, 159: 609-614. Go to original source...
  76. White M.C., Chaney R.L. (1980): Zinc, Cd and Mn uptake by soybean from two Zn- and Cd-amended coastal plain soils. Soil Science Society of American Journal, 44: 308-313. Go to original source...
  77. Yanchev I., Jalnov I., Terziev I. (2000): Hemps (Cannabis sativa L.) capacities for restricting the heavy metal soil pollution. Plant Science, 37: 532-537.
  78. Zheljazkov V.D., Nielsen N.E. (1996a): Effect of heavy metals on peppermint and cornmint. Plant and Soil, 178: 59-66. Go to original source...
  79. Zheljazkov V.D., Nielsen N.E. (1996b): Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of Lavender (Lavandula angustifolia Mill.) production. Journal of Essential Oil Research, 8: 259-274. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.