Plant Soil Environ., 2006, 52(3):119-129 | DOI: 10.17221/3355-PSE

Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil

N. Narula1, A. Deubel2, W. Gans2, R.K. Behl1, W. Merbach2
1 Instituteof Soil Science and Plant Nutrition, Faculty of Agriculture, Martin Luther University, Halle-Wittenberg, Halle, Germany
2 Department of Microbiology, CCS Haryana Agriculture University, Hisar, India

Soil bacteria belonging to the genus Azotobacter, Pantoea and some unidentified soil isolates were tested in vitro for phytohormone production under laboratory and soil conditions. The German wheat variety Munk was inoculated by several soil bacteria with exogenously applied hormones (IAA, 2,4-D) and a flavonoid(naringenin) with a half of the amount of recommended doses of fertilizers under greenhouse conditions. Most of the soil bacteria tested were able to produce indole acetic acid (IAA), and stimulated a lateral root development and colonization by the addition of 2,4-D and IAA. A formation of paranodules on roots as a result of crack entry invasion was observed with 2,4-D as well as with IAA. We were able to reisolate the organism from the paranodules and could establish the same results. Analyses for root exudates and in vitro phytohormone production by various bacterial isolates were also carried out, revealing that 2,4-D can be replaced either by high IAA producing bacteria or by exogenous application of IAA. Bacterial survival in the rhizosphere as well as the root and shoot weight of wheat plants were positively affected also by the addition of IAA, 2,4-D and naringenin.

Keywords: paranodules; colonization; Azotobacter chroococcum; Pantoea agglomerans; wheat

Published: March 31, 2006  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Narula N, Deubel A, Gans W, Behl RK, Merbach W. Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environ. 2006;52(3):119-129. doi: 10.17221/3355-PSE.
Download citation

References

  1. Arshad M., Frankenberger J.W.T. (1991): Microbial production of plant hormones. Plant Soil, 133: 1-8. Go to original source...
  2. Bottini R., Fulchieri M., Pearce D., Pharis R.P. (1989): Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol., 90: 45-47. Go to original source... Go to PubMed...
  3. Cacciari D., Lippi D., Pietrosanti T., Petrosanti W. (1989): Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant Soil, 115: 151-153. Go to original source...
  4. Cocking E.C. (2003): Endophyte colonization of plant roots by nitrogen fixing bacteria. Plant Soil, 252: 169-175. Go to original source...
  5. Cocking E.C., Al-Mallah M.K., Benson E., Davey M.R. (1990): Nodulation of non legumes by rhizobia. In: Gresshoff P.M., Roth E.C., Stacey G., Newton W.E. (eds.): Nitrogen Fixation-Achievements and Objectives. Chapman and Hall, New York: 813-823. Go to original source...
  6. Crozier A., Arruda P., Jasmin J.M., Monterio A.M., Sandberg G. (1988): Analysis of indole-3 acetic acid and related indoles in culture medium and Azospirillum brasilense. Appl. Environ. Microbiol., 54: 2833-2837. Go to original source... Go to PubMed...
  7. Dobbelaere S., Croonenborghs A., Thys A., Broek A.V., Vanderleyden J. (1999): Phytostimulatory effect of A. brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil, 212: 155-164. Go to original source...
  8. Gransee A., Wittenmayer L. (2000): Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J. Plant Nutr. Soil. Sci., 163: 381-385. Go to original source...
  9. Hubbell D.H., Tien T.M., Gaskin M.H., Lee J. (1979): Physiological interaction in the Azospirillum grass root association. In: Vose P., Ruschel A.P. (eds.): Associative Symbiosis. CRC Press, the Netherlands: 1-6.
  10. Hunter W.J. (1989): Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol. Plant., 76: 31-36. Go to original source...
  11. Jensen V. (1951): Notes on biology of Azotobacter. In: Proc. Soc. Appl. Bacteriol., 74: 89-93. Go to original source...
  12. Kennedy I.R. (1994): Auxin induced N 2 fixing associations between Azospirillum brasilense and wheat. In: Hegazi N.A., Fayez M., Monib M. (eds.): Nitrogen Fixation with Non-legumes. Am. Univ., Cairo: 513-523.
  13. Kennedy I.R., Pereg-Gerk L.L., Wood C., Deaker R., Gilchrist, Katupitiya S. (1997): Biological nitrogen fixation in non-leguminous field crops. Facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil, 194: 65-79. Go to original source...
  14. Kennedy I.R., Tchan Y.T. (1992): Biological nitrogen fixation in non-leguminous field crops. Recent advances. Plant Soil, 141: 93-118. Go to original source...
  15. Lakshminarayana K. (1993): Influence of Azotobacter on nutrition of plant and crop productivity. In: Proc. Indian Nat. Sci. Acad., B59: 227-234.
  16. Lee M., Breckenridge C., Knowles R. (1970): Effect of some culture conditions on the production of indole acetic acid and gibberellin like substances by Azotobacter vinelandii. Can. J. Microbiol., 16: 1325-1330. Go to original source... Go to PubMed...
  17. Miller J.H. (1972): Experiments of Molecular Genetics. Cold Spring Harbour Laboratory Press, New York: 352-355.
  18. Narula N., Deubel A., Gransee A., Behl R.K., Merbach W. (2002): Impact of fertilizers on total microbiological flora in planted and unplanted soils of long term fertilization experiment. Arch. Acker- Pfl.-Bau Bodenkde, 48: 171-180. Go to original source...
  19. Narula N., Nijhawan D.C., Lakshminarayana K., Kapoor K., Verma O.P.S. (1991): Response of soil isolates and analogue resistant mutants of Azotobacter chroococcum on pearl millet [Pennisetum typhoides (Burn S & H)]. Indian J. Agr. Sci., 61: 268.
  20. Nieto K.F., Frankenberger W.T. (1989): Biosynthesis of cytokinins by Azotobacter chroococcum. Soil. Biol. Biochem., 21: 967-972. Go to original source...
  21. Nutman P.S. (1955): Study frame works for symbiotic nitrogen fixation. In: Newton W., Postgate J.R., Rodeiguej-Barrueco C. (eds.): Recent Development in Nitrogen Fixation. Acad. Press, London: 442-447.
  22. Pathak D.V., Lakshminarayana K.L., Narula N. (1995): Analogue resistant mutants of A. chroococcum affecting growth parameters in sunflower (Helianthus annus L.) under pot culture conditions. In: Proc. Nat. Acad. Sci. (India), 18: 203-206.
  23. Prayitno J., Stefaniak J., Mclver J., Weinman J.J., Dazzo F.B., Ladha J.K., Barraquio W., Yanni Y.G., Rolfe R.G. (1998): Interactions of rice seedlings with bacteria isolated from rice roots. Aust. J. Plant Physiol., 26: 521-535. Go to original source...
  24. Sabry R.S., Saleh S.A., Batchelor C.A., Jones J., Jotham J., Webster G., Kothari S.L., Davey M., Cocking E.C. (1997): Endophytic establishment of Azorhizobium caulinodans in wheat. In: Proc. R. Soc. London Biol. Sci., 264: 341-346. Go to original source...
  25. Sriskandarajah S., Kennedy I.R., Yu D., Tchan Y.T. (1993): Effects of plant growth regulators on acetylene reducing associations between A. brasilense and wheat. Plant Soil, 153: 165-177. Go to original source...
  26. Tang Y.W., Bonner J. (1974): The enzymatic inactivation of IAA. Some characteristics of enzyme contained in pea seedling. Arch. Biochem., 13: 11-25.
  27. Tchan Y.T., Zeman A.M.M., Kennedy I.R. (1991): Nitrogen fixation in para-nodules of wheat roots by introduced free living diazotrophs. Plant Soil, 137: 43-47. Go to original source...
  28. Tien T.M., Gaskin M.H., Hubbel D.H. (1979): Plant growth substances produced by A. brasilense and their effect on the growth of pearlmillet (Pennisetum americanum L.). Appl. Environ. Microbiol., 37: 1016-1024. Go to original source... Go to PubMed...
  29. Umali-Garcia M., Hubbell D.H., Gaskins M.H., Dazo F.B. (1980): Association of Azospirillum with grass roots. Appl. Environ. Microbiol., 39: 219-226. Go to original source... Go to PubMed...
  30. Verma S., Kumar V., Narula N., Merbach W. (2001): Studies on in vitro production of antimicrobial substances by A. chroococcum isolates/mutants. J. Plant Dis. Prot., 108: 152-165.
  31. Yegorenkova I.V., Konnova1 S.A., Sachuk V.N., Ignatov V.V. (2001): Azospirillum brasilense colonisation of wheat roots and the role of lectin-carbohydrate interactions in bacterial adsorption and root-hair deformation. Plant Soil, 231: 275-282. Go to original source...
  32. Yost C.K., Rochepeau P., Hynes M.F. (1998): Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. Microbiology-Reading., 144: 1945-1956. Go to original source... Go to PubMed...
  33. Yu D., Kennedy I.R. (1995): Nitrogenase activity (C 2H2 reduction) of Azorhizobium in 2,4D induced root structures of wheat. Soil Biol. Biochem., 27: 459-462. Go to original source...
  34. Zimmer W., Roeben K., Bothe H. (1988): An alternative explanation for plant growth promotion by bacteria of the genus Azospirillum. Planta, 176: 333-342. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.