Plant Soil Environ., 2006, 52(3):130-137 | DOI: 10.17221/3356-PSE

Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptáme and growth of pepper and cucumber

H.S. Han1, Supanjani2, Lee K.D.2
1 Department of Biology, Suncheon National University, Jeonnam, Korea
2 Department of Plant Science, McGill University, MacDonald Campus, Quebec, Canada

Biofertilizers have been used as sources to improve plant nutrients in sustainable agriculture. Experiments were conducted to evaluate the potential of phosphate solubilizing bacteria (PSB) Bacillus megaterium var. phosphaticum and potassium solubilizing bacteria (KSB) Bacillus mucilaginosus inoculated in nutrient limited soil planted with pepper and cucumber. Results showed that rock P and K applied either singly or in combination did not significantly enhance soil availability of P and K, indicating their unsuitability for direct application. PSB was a more potent P-solubilizer than KSB, and co-inoculation of PSB and KSB resulted in consistently higher P and K availability than in the control without bacterial inoculum and without rock material fertilizer. Integrated rock P with inoculation of PSB increased the availability of P and K in soil, the uptake of N, P and K by shoot and root, and the growth of pepper and cucumber. Similar but less pronounced results were obtained when rock K and KSB were added concomitantly. Combined together, rock materials and both bacterial strains consistently increased further mineral availability, uptake and plant growth of pepper and cucumber, suggesting its potential use as fertilizer.

Keywords: pepper; cucumber; phosphate solubilizing bacteria; potassium solubilizing bacteria

Published: March 31, 2006  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Han HS, Supanjani, Lee KD. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptáme and growth of pepper and cucumber. Plant Soil Environ. 2006;52(3):130-137. doi: 10.17221/3356-PSE.
Download citation

References

  1. Alexander M. (1977): Introduction to Soil Microbiology. John Wiley and Sons Inc., New York, USA.
  2. Allison L.E. (1965): Organic Carbon. In: Methods of Soil Analysis. Part II. In: Black C.A. (ed.): Am. Soc. Agron. Inc. Publ., Madison, Wisconsin, USA: 1367-1376. Go to original source...
  3. Anith K.N., Momol M.T., Kloepper J.W., Marois J.J., Olson S.M., Jones J.B. (2004): Efficacy of plant growthpromoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis., 88: 669-673. Go to original source... Go to PubMed...
  4. Bhuvaneswari T.V., Turgeon B.G., Bauer W.D. (1980): Early events in the infection of soybean (Glycine max L. Merr.) by Rhizobium japonicum I. Location of infectable root cells. Plant Physiol., 66: 1027-1031. Go to original source... Go to PubMed...
  5. Bojinova D., Velkova R., Grancharov I., Zhelev S. (1997): The bioconversion of Tunisian phosphorite using Aspergillus niger. Nutr. Cyc. Agroecosyst., 47: 227-232. Go to original source...
  6. Brady N.C. (1990): The Nature and Properties of Soils. Macmillan, New York, USA: 351-380.
  7. Çakmakçi R., Kantar F., Algur Ö.F. (1999): Sugar beet and barley yields in relation to Bacillus polymyxa and Bacillus megaterium var. phosphaticum inoculation. J. Plant Nutr. Soil Sci., 162: 437-442. Go to original source...
  8. Friedrich S., Platonova N.P., Karavaiko G.I., Stichel E., Glombitza F. (1991): Chemical and microbiological solubilization of silicates. Acta Biotechnol., 11: 187-196. Go to original source...
  9. Gerke L. (1992): Phosphate, aluminum, and iron in the soil solution of three different soils in relation to varying concentrations of citric acid. Z. Pfl.-Ernähr. Bodenkde, 155: 17-22. Go to original source...
  10. Hu X., Boyer G.L. (1996): Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213. Appl. Environ. Microbiol., 62: 4044-4048. Go to original source... Go to PubMed...
  11. Illmer P., Barbato A., Schinner F. (1995): Solubilization of hardly-soluble AlPO 4 with P-solubilizing microorganism. Soil Biol. Biochem., 27: 265-270. Go to original source...
  12. Ito T. (1993): Enzymatic determination of itoic acid, a Bacillus subtilis siderophore, and 2,3-dihydroxybenzoic acid. Appl. Environ. Microbiol., 59: 2343- 2345. Go to original source... Go to PubMed...
  13. Kim T., Jung W., Lee B., Yoneyama T., Kim H., Kim K. (2003): P effects on N uptake and remobilization during regrowth of Italian ryegrass (Lolium mutiflorum). Environ. Exp. Bot., 50: 233-242. Go to original source...
  14. Kundu B.S., Gaur A.C. (1980): Effect of phosphobacteria on the yield and phosphate uptake of potato crop. Curr. Sci., 49: 159.
  15. Lin Q.M., Rao Z.H., Sun Y.X., Yao J., Xing L.J. (2002): Identification and practical application of silicatedissolving bacteria. Agr. Sci. China, 1: 81-85.
  16. Loh J., Stacey G. (2003): Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl. Environ. Biol., 69: 10-17. Go to original source... Go to PubMed...
  17. Lopez-Garcia S.L., Vazquez T.E.E., Favelukes G., Lodeiro A.R. (2002): Rhizobial position as a main determinant in the problem of competition for nodulation in soybean. Environ. Microbiol., 4: 216-224. Go to original source... Go to PubMed...
  18. Nahas E., Banzatto D.A., Assis L.C. (1990): Fluorapatite solubilization by Aspergillus niger in vinasse medium. Soil Biol. Biochem., 22: 1097-1101. Go to original source...
  19. Omer S.A. (1998): The role of rock-phosphate-solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotechnol., 14: 211-218. Go to original source...
  20. Park M., Singvilay O., Seok Y., Chung J., Ahn K., Sa T. (2003): Effect of phosphate solubilizing fungi on P uptake and growth to tobacco in rock phosphate applied soil. Korean J. Soil Sci. Fertil., 36: 233-238.
  21. Rajan S.S.S., Watkinson J.H., Sinclair A.G. (1996): Phosphate rock of for direct application to soils. Adv. Agron., 57: 77-159. Go to original source...
  22. RDA (Rural Development Administration, Korea) (1988): Methods of Soil Chemical Analysis. Nat. Inst. Agr. Sci. Technol., RDA, Suwon, Korea.
  23. Richards J.E., Bates T.E. (1989) Studies on the potassium-supplying capacities of southern Ontario soils. III. Measurement of available K., Can. J. Soil Sci., 69: 597-610. Go to original source...
  24. Şahin F., Çakmakçi R., Kantar F. (2004): Sugar beet and barley yields in relation to inoculation with N 2-fixing and phosphate solubilizing bacteria. Plant Soil, 265: 123-129. Go to original source...
  25. Sample E.C., Soper R.J., Racz G.J. (1980): Reactions of phosphate fertilizers in soils. In: Khasawneh F.E., Sample E.C., Kamprath E.J. (eds.): The Role of Phosphorus in Agricultures. Am. Soc. Agron., Madison, Wisconsin, USA: 263-310. Go to original source...
  26. Schilling G., Gransee A., Deubel A., Lezovic G., Ruppel S. (1998): Phosphorus availability, root exudates, and microbial activity in the rhizosphere. Z. Pfl.Ernähr. Bodenkde, 161: 465-478. Go to original source...
  27. Sessitsch A., Howieson J.G., Perret X., Antoun H., Martinez E. (2002): Advances in Rhizobium research. Crit. Rev. Plant Sci., 21: 323-378. Go to original source...
  28. Sheng X.F., He L.Y., Huang W.Y. (2002): The conditions of releasing potassium by a silicate-dissolving bacterial strain NBT. Agr. Sci. China, 1: 662-666.
  29. Sheng X.F., Huang W.Y. (2001): Physiological characteristics of strain NBT of silicate bacterium. Acta Pedol. Sin., 38: 569-574.
  30. Sheng X.F., Huang W.Y. (2002): Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol. Sin., 39: 863-871.
  31. Sundara B., Natarajan V., Hari K. (2002): Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res., 77: 43-49. Go to original source...
  32. Tiwari V.N., Lehri L.K., Pathak A.N. (1989): Effect of inoculation crops with phospho-microbes. Exp. Agr., 25: 47-50. Go to original source...
  33. Ullman W.J., Kirchman D.L., Welch S.A. (1996): Laboratory evidence for microbially mediated silicate mineral dissolution in nature. Chem. Geol., 132: 11-17. Go to original source...
  34. Vessey K.J. (2003): Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255: 571-586. Go to original source...
  35. Vincent J.M. (1970): A Manual for the Practical Study of the Root-Nodule Bacteria. Blackwell Sci. Publ. Oxford, UK.
  36. Wahid O.A., Mehana T.A. (2000): Impact of phosphatesolubilizing fungi on the yield and phosphorus uptake by wheat and faba bean plants. Microbiol. Res., 155: 221-227. Go to original source... Go to PubMed...
  37. Xie J.C. (1998): Present situation and prospects for the world's fertilizer use. Plant Nutr. Fertil. Sci., 4: 321-330.
  38. Zakhia F., de Lajudie P. (2001): Taxonomy of rhizobia. Agronomie, 21: 569-576. Go to original source...
  39. Zapata F., Roy, R.N. (2004): Use of Phosphate Rock for Sustainable Agriculture. FAO and IAEA, Rome, Italy.
  40. Zehnden G.W., Murphy J.F., Sikoras E.J., Kloepper J.W. (2001): Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107: 39-50. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.