Plant Soil Environ., 2007, 53(5):216-224 | DOI: 10.17221/2203-PSE

The role of Fe- and Mn-oxides during EDTA-enhanced phytoextraction of heavy metals

M. Komárek1, P. Tlustoš1, J. Száková1, V. Chrastný2, J. Balík1
1 Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
2 Faculty of Agriculture, University of South Bohemia, České Budějovice, Czech Republic

In several cases ethylenediaminetetraacetic acid (EDTA) proved to be an efficient mobilising amendment during chemically enhanced phytoextraction of heavy metals. The presence of Fe-(hydr)oxides and their dissolution after the addition of EDTA can limit the phytoextraction of the targeted heavy metals due to the high stability of the formed Fe(III)EDTA complexes. This study has focused on the influence of Fe- and Mn-oxides and hydroxides dissolution on heavy metal uptake by Zea mays in a two-year EDTA-enhanced phytoextraction process. Incubation experiments and speciation modelling proved the increased concentrations of Mn and Fe through the dissolution of Mn-and Fe-(hydr)oxides. Furthermore, increased Fe and Mn accumulation was observed in maize plants after the second year of the phytoextraction process. Therefore, the presence of Mn- and especially Fe-(hydr)oxides proved to be a limiting factor during EDTA-enhanced phytoextraction of heavy metals from contaminated soils.

Keywords: EDTA; phytoextraction; Fe oxides; Mn oxides; heavy metals; Zea mays

Published: May 31, 2007  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Komárek M, Tlustoš P, Száková J, Chrastný V, Balík J. The role of Fe- and Mn-oxides during EDTA-enhanced phytoextraction of heavy metals. Plant Soil Environ. 2007;53(5):216-224. doi: 10.17221/2203-PSE.
Download citation

References

  1. Blaylock M.J., Salt D.E., Dushenkov S., Zakharova O., Gussman C., Kapulnik Y., Ensley B.D., Raskin I. (1997): Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol., 31: 860-865. Go to original source...
  2. McCarty D.K., Moore J.N., Marcus W.A. (1998): Mineralogy and trace element association in an acid mine drainage iron oxide precipitate; comparison of selective extractions. Appl. Geochem., 13: 165-176. Go to original source...
  3. Chen H., Cutright T. (2001): EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 45: 21-28. Go to original source... Go to PubMed...
  4. Chrastný V., Komárek M., Tlustoš P., Švehla J. (2006): Effects of flooding on lead and cadmium speciation in sediments from a drinking water reservoir. Environ. Monit. Assess., 118: 113-123. Go to original source... Go to PubMed...
  5. Do Nascimento C.W., Amarasiriwardena D., Xing B. (2006): Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ. Pollut., 140: 114-123. Go to original source... Go to PubMed...
  6. Dong D.M., Nelson Y.M., Lion L.W., Shuler M.L., Ghiorse W.C. (2000): Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions: new evidence for the importance of Mn and Fe oxides. Water Res., 34: 427-436. Go to original source...
  7. Ensley B.D. (2000): Rationale for use of phytoremediation. In: Raskin I., Ensley B.D. (eds.): Phytoremediation of toxic metals - Using plants to clean up the environment. John Wiley & Sons, New York: 3-12.
  8. Ettler V., Vaněk A., Mihaljevič M., Bezdička P. (2005): Contrasting lead speciation in forest and tilled soils heavily polluted by lead metallurgy. Chemosphere, 58: 1449-1459. Go to original source... Go to PubMed...
  9. Huang J.W.W., Chen J., Berti W.R., Cunningham S.D. (1997): Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol., 3: 800-805. Go to original source...
  10. Keller C., Ludwig C., Davoli F., Wocheke J. (2005): Thermal treatment of metal-enriched biomass produced from heavy metal phytoextration. Environ. Sci. Technol., 39: 3359-3367. Go to original source... Go to PubMed...
  11. Komárek M., Chrastný V., Ettler V., Tlustoš P. (2006): Evaluation of extraction/digestion techniques used to determine lead isotopic composition in forest soils. Anal. Bioanal. Chem., 385: 1109-1115. Go to original source... Go to PubMed...
  12. Komárek M., Tlustoš P., Száková J., Chrastný V., Ettler V. (2007): The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere, 67: 640-651. Go to original source... Go to PubMed...
  13. Kos B., Leštan D. (2003): Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ. Sci. Technol., 37: 624-629. Go to original source... Go to PubMed...
  14. Luo C., Shen Z., Li X. (2005): Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59: 1-11. Go to original source... Go to PubMed...
  15. Macek T., Pavlíková D., Macková M. (2004): Phytoremediation of metals and inorganic pollutants. In: Singh A., Ward O.P. (eds.): Soil Biology. Vol. 1, Applied Bioremediation and Phytoremediation. Springer Verlag, Berlin, Heidelberg: 135-157. Go to original source...
  16. Macková M., Dowling D., Macek T. (eds.) (2006): Phytoremediation and Rhizoremediation, Theoretical Background; FOCUS on Biotechnology. Springer, Dordrecht. Go to original source...
  17. Martell A.E., Smith R.M., Motekaitis R.J. (2001): NIST critically selected stability constants of metal complexes. Version 6.0. NIST. Gaithersburg, MD.
  18. Meers E., Ruttens A., Hopgood M.J., Samson D., Tack F.M.G. (2005): Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 58: 1011-1022. Go to original source... Go to PubMed...
  19. Miholová D., Mader P., Száková J., Slámová A., Svatoš Z. (1993): Czechoslovakian biological certified reference materials and their use in the analytical quality assurance system in a trace element laboratory. Fresen. J. Anal. Chem., 345: 256-260. Go to original source...
  20. Nowack B. (2002): Environmental chemistry of aminopolycarboxylate chelating agents. Environ. Sci. Technol., 36: 4009-4016. Go to original source... Go to PubMed...
  21. Nowack B., Schulin R., Robinson B.H. (2006): Critical assessment of chelant-enhanced metal phytoextraction. Environ. Sci. Technol., 40: 5225-5232. Go to original source... Go to PubMed...
  22. Nowack B., Sigg L. (1997): Dissolution of Fe(III) (hydr)oxides by metal-EDTA complexes. Geochim. Cosmochim. Acta, 61: 951-963. Go to original source...
  23. Parkhurst D.L., Appelo C.A.J. (1999): User's Guide to PHREEQC (version 2) - A computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. U.S. geological survey report 99-4259, Denver, Colorado.
  24. Quevauviller P. (1998): Operationally defined extraction procedures for soil and sediment analysis. TracTrends Anal. Chem., 17: 289-298. Go to original source...
  25. Robinson B.H., Mills T.M., Petit D., Fung L.E., Green S.R., Clothier B.E. (2003): Natural and induced cadmium-accumulation in poplar and willow: Implication for phytoremediation. Plant Soil, 227: 301-306. Go to original source...
  26. Sarret G., Vangronsveld J., Manceau A., Musso M., D'Haen J., Menthonnex J.J., Hazemann J.L. (2001): Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environ. Sci. Technol., 35: 2854-2859. Go to original source... Go to PubMed...
  27. Shen Z.G., Li X.D., Wang C.C., Chen H.M., Chua H. (2002): Lead phytoextraction from contaminated soil with high-biomass plant species. J. Environ. Qual., 31: 1893-1900. Go to original source... Go to PubMed...
  28. Šichorová K., Tlustoš P., Száková J., Kořínek K., Balík J. (2004): Horizontal and vertical variability of heavy metals in the soil of a polluted area. Plant Soil Environ., 50: 525-534. Go to original source...
  29. Tandy S., Schulin R., Nowack B. (2006): Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environ. Sci. Technol., 40: 2753-2758. Go to original source... Go to PubMed...
  30. Vaněk A., Borůvka L., Drábek O., Mihaljevič M., Komárek M. (2005): Mobility of lead, zinc and cadmium in alluvial soils heavily polluted by smelting industry. Plant Soil Environ., 51: 316-321. Go to original source...
  31. Vassil A.D., Kapulnik Y., Raskin I., Salt D.E. (1998): The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol., 117: 447-453. Go to original source... Go to PubMed...
  32. Wu L.H., Luo Y.M., Xing X.R., Christie P. (2004): EDTAenhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agr. Ecosyst. Environ., 102: 307-318. Go to original source...
  33. Zbíral J. (2000): Determination of phosphorus in calcareous soils by Mehlich 3, Mehlich 2, CAL, and Egner extractants. Commun. Soil Sci. Plant Anal., 31: 3037-3048. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.