Plant Soil Environ., 2008, 54(6):262-270 | DOI: 10.17221/2787-PSE

Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhizaL.

R. John1, P. Ahmad2, K. Gadgil1, S. Sharma2
1 Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
2 Biochemistry Laboratory, CRDT, Indian Institute of Technology Delhi, New Delhi, India

Aquatic plants are known to accumulate heavy metals. In this study, Duckweed plants (Lemna polyrrhiza L.) were exposed to different concentrations of Cd and Pb. Various physio-biochemical parameters (fresh weight, chlorophyll content, soluble protein, soluble sugars, proline content and metal absorption) were studied. At lower metal concentrations, an increase in proline, protein and sugar was observed but at higher concentrations (above 30 mg/l) their decrease was noticed. Uptake of the metals was concentration and time dependent. Treatment with 1, 10 and 20 mg/l of Cd and Pb showed synergistic relation while 30 and 40 mg/l treatments showed antagonistic relation during the metal uptake. The results suggest that the L. polyrrhiza can be effectively used as a phytoremediator for wastewater polluted with more than one heavy metal at moderate concentrations.

Keywords: absorption; biochemical parameters; heavy metal; Lemna polyrrhiza L.; phytoremediation

Published: June 30, 2008  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
John R, Ahmad P, Gadgil K, Sharma S. Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhizaL. Plant Soil Environ. 2008;54(6):262-270. doi: 10.17221/2787-PSE.
Download citation

References

  1. Ahmad P., Sharma S., Srivastava P.S. (2006): Differential physio-biochemical responses of high yielding varieties of Mulberry (Morus alba) under alkalinity (Na 2CO 3) stress in vitro. Physiol. Mol. Biol. Plants, 12: 59-66. Go to original source... Go to PubMed...
  2. Ahmad P., Sharma S., Srivastava P.S. (2007): In vitro selection of NaHCO3 tolerant cultivars of Morus alba (Local and Sujanpuri) in response to morphological and biochemical parameters. Hort. Sci. (Prague), 34: 114-122. Go to original source...
  3. Aidid S.B., Okamoto H. (1993): Responses of elongation growth rate, turgor pressure and cell wall extensibility of stem cells of Impatiens balsamina to lead, cadmium and zinc. Biometals, 6: 245-249. Go to original source...
  4. An Y.J., Kim Y.M., Kwon T.I., Jeong S.W. (2004): Combined effects of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci. Total Environ., 326: 85-93. Go to original source... Go to PubMed...
  5. Arduini I., Godbold D.L., Onnis A. (1996): Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol. Plant., 97: 111-117. Go to original source...
  6. Bates L.S., Waldren R.P., Teare I.D. (1973): Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207. Go to original source...
  7. Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizating the principle of protein dyes binding. Anal. Biochem., 72: 248-254. Go to original source...
  8. Brennan M.A., Shelley M.L. (1999): A model of the uptake, translocation and accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol. Eng., 129: 271-297. Go to original source...
  9. Chandrashekhar K.R., Sandhyarani S. (1996): Salinity induced chemical changes in Crotalaria striata DC. Indian J. Plant Physiol., 1: 44-48.
  10. Costa G., Spitz E. (1997): Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Sci., 128: 131-140. Go to original source...
  11. Davies C.S., Nielsen S.S., Nielsen N.C. (1987): Flavor improvement of soybean preparations by genetic removal of lipoxygenase-2. J. Am. Oil Chem. Soc., 64: 1428-1433. Go to original source...
  12. Dey P.M. (1990): Oligosaccharides. In: Dey P.M., Harborne J.B. (eds.): Methods in Plant Biochemistry, Vol. 2, Carbohydrates. Academic Press, London: 189-218. Go to original source...
  13. Dhir B., Sharmila P., Saradhi P.P. (2004): Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline. Aquat. Toxicol., 66: 141-147. Go to original source... Go to PubMed...
  14. Ericson M.C., Alfinito A.E. (1984): Proteins produced during salt stress in tobacco cell cultures. Plant Physiol., 74: 506-509. Go to original source... Go to PubMed...
  15. Gla ss D.J. (2000): Economic p otential of phy toreme diation. In: R a sk in I., Ensle y B.D. (e ds.): Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. John Wiley and Sons, New York: 15-31.
  16. Hiscox J.D., Israelstam G.F. (1979): A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot., 59: 1332-1334. Go to original source...
  17. Mohan B.S., Hosetti B.B. (1997): Potential phytotoxicity of lead and cadmium to Lemna minor L. growth in sewage stabilization ponds. Environ. Pollut., 98: 233-236. Go to original source...
  18. Moya J.L., Ros R., Picazo I. (1993): Influence of cadmium and nickel on g row th, net photosynthesis and carbohydrate distribution in rice plants. Photosynth. Res., 36: 75-80. Go to original source... Go to PubMed...
  19. Palma J.M., Sandalio L.M., Javier Corpas F., RomeroPuertas M.C., McCarthy I., del Rio L.A. (2002): Plant proteases protein degradation and oxidative stress: role of peroxisomes. Plant Physiol. Biochem., 40: 521-530. Go to original source...
  20. Patra M., Bhowmik N., Bandopadhyay B., Sharma A. (2004): Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Exp. Bot., 52: 199-223. Go to original source...
  21. Peralta-Videa J.R., Gardea-Torresdey J.L., Gomez E., Tiermann K.J., Parson J.G., Carrillo G. (2002): Effect of mixed cadmium, copper, nickel and zinc at different pH upon alfafa growth and heavy metal uptake. Environ. Pollut., 119: 291-301. Go to original source... Go to PubMed...
  22. Perez-Alfocea F., Estan M.T., Santa Cruz A., Bolarin M.C. (1993): Effects of salinity on nitrate, total nitrogen, soluble protein and free amino acid levels in tomato plants. J. Hort. Sci., 68: 1021-1027. Go to original source...
  23. Prasad D.P.H., Prasad A.R.K. (1987): Effects of lead and mercury on chlorophyll synthesis in mungbean seedlings. Phytochemistry, 26: 881-884. Go to original source...
  24. Prasad M.N.V., Malec A., Waloszek A., Bojko M., Strzalka K. (2001): Physiological responses of Lemna trisulca L. to cadmium and copper bioaccumulation. Plant Sci., 161: 881-889. Go to original source...
  25. Prokopiev E. (1978): Afforestation of Industrial Areas. Zemizdat, Sofia. (In Bulgarian)
  26. Rahmani G.N.H., Sternberg S.P.K. (1999): Bioremoval of lead from water using Lemna minor. Biores. Technol., 70: 225-230. Go to original source...
  27. Roosens N., Verbruggen N., Meerts P., XimenezEmbun P., Smith J.A. (2003): Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ., 26: 1657-1673. Go to original source...
  28. Saleh M., Al-Garni S. (2006): Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogenfixer Rhizobium bacterium. Afr. J. Biotechnol., 5: 133-142.
  29. Saradhi P., Alia, Vani B. (1993): Inhibition of mitochondrial electron transport is the prime cause b eh i n d p ro l i n e a cc u mu l at i o n d u r i n g m i n e r a l deficiency in Or yza sativa. Plant Soil, 155/156: 465-468. Go to original source...
  30. Shah K., D ub e y R.S. (1998): A 18 kDa cadmium inducible protein complex from rice: its purification and characterization from rice (Oryza sativa L.) roots tissues. J. Plant Physiol., 152: 448-454. Go to original source...
  31. Siedlecka A., Krupa Z. (1996): Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem., 34: 833-841.
  32. Stiborová M., Ditrichová M., Březinová A. (1987): Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedlings. Biol. Plant., 29: 453-467. Go to original source...
  33. Ting Y.P., Lawson F., Prince I.G. (1991): Uptake of cadmium and zinc by alga Chlorella vulgaris: Multiion situation. Biotechnol. Bioeng., 37: 445-455. Go to original source... Go to PubMed...
  34. Van Assche F., Clijsters H. (1990): Effects of metals on enzyme activity in plants. Plant Cell Environ., 13: 195-206. Go to original source...
  35. Waisberg M., Joseph P., Hale B., Beyersmann D. (2003): Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 192: 95-117. Go to original source... Go to PubMed...
  36. WHO (1995): Inorganic Lead. Environmental Health Criteria 165. World Health Organization, Geneva.
  37. Wojcik M., Vangronsveld J., Tukiendorf A. (2005): Cadmium tolerance in Thlaspi caerulescens. I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environ. Exp. Bot., 53: 151-161. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.