Plant Soil Environ., 2009, 55(10):424-428 | DOI: 10.17221/137/2009-PSE

Soil micromorphology use for modeling of a non-equilibrium water and solute movement

R. Kodešová
Department of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Prague, Czech Republic

Soil micromorphology was applied to specify flow domains in different soils and to select a suitable numerical model for simulation of water flow and herbicide transport. Pore structure detected on soil micromorphological images represented in all cases domains of prevailing water flow and solute transport. Depending on pore configuration and boundary conditions either water immobilization or preferential flow was observed and simulated. The benefits and limitations of the soil micromorphology imaging are discussed and compared with the more often used X-ray computer tomography, magnetic resonance imaging and dye tracer imaging.

Keywords: soil pore structure; soil micromorphology; herbicide transport; single-porosity model; dual-porosity model; dual-permeability model

Published: October 31, 2009  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kodešová R. Soil micromorphology use for modeling of a non-equilibrium water and solute movement. Plant Soil Environ. 2009;55(10):424-428. doi: 10.17221/137/2009-PSE.
Download citation

References

  1. Baumann T., Petsch R., Niessner R. (2000): Direct 3-D measurements of the flow velocity in porous media using magnetic resonance tomography. Environmental Science and Technology, 34: 4242-4248. Go to original source...
  2. Bouma J., Jongerius A., Boersma O., Jager A., Schoonderbeek D. (1977): The function of different types of macropores during saturated flow through four swelling soil horizons. Soil Science Society of America Journal, 41: 945-950. Go to original source...
  3. Bouma J., Jongerius A., Schoonderbeek D. (1979): Calculation of saturated hydraulic conductivity of some pedal clay soils using micromorphometric data. Soil Science Society of America Journal, 43: 261-264. Go to original source...
  4. Císlerová M., Votrubová J. (2002): CT derived porosity distribution and flow domains. Journal of Hydrology, 267: 186-200. Go to original source...
  5. Clothier B.E., Green S.R., Deurer M. (2008): Preferential flow and transport in soil: progress and prognosis. European Journal of Soil Science, 59: 2-13. Go to original source...
  6. Constantini E.A.C., Pellegrini S., Vignozzi N., Barbetti R. (2006): Micromorphological characterization and monitoring of internal drainage in soils of vineyards and olive groves in central Italy. Geoderma, 131: 388-403. Go to original source...
  7. Gerke H.H. (2006): Preferential flow descriptions for structured soils. Journal of Plant Nutrition and Soil Science, 169: 382-400. Go to original source...
  8. Jarvis N. (2007): A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. European Journal of Soil Science, 58: 523-546. Go to original source...
  9. Javaux M., Kasteel R., Vanderborght J., Vanclooster M. (2006): Interpretation of dye transport in a macroscopically heterogeneous unsaturated subsoil with a one-dimensional model. Vadose Zone Journal, 5: 529-538. Go to original source...
  10. Juhász C.E.P., Cooper M., Cursi P.R., Ketzer A.O., Toma R.S. (2007): Savanna woodland soil micromorphology related to water retention. Scientia Agricola, 64: 344-354. Go to original source...
  11. Kastell R., Vogel H.J., Roth K. (2000): From local scale hydraulic properties to effective transport in soil. European Journal of Soil Science, 51: 81-91. Go to original source...
  12. Kočárek M., Kodešová R., Kozák J., Drábek O., Vacek O. (2005): Chlorotoluron behaviour in five different soil types. Plant, Soil and Environment, 51: 304-309. Go to original source...
  13. Kodešová R., Kozák J., Vacek O. (2004): Field and numerical study of chlorotoluron transport in the soil profile. Plant, Soil and Environment, 50: 333-338. Go to original source...
  14. Kodešová R., Kozák J., Šimůnek J., Vacek O. (2005): Single and dual-permeability model of chlorotoluron transport in the soil profile. Plant, Soil and Environment, 51: 310-315. Go to original source...
  15. Kodešová R., Kodeš V., Žigová A., Šimůnek J. (2006): Impact of plant roots and soil organisms on soil micromorphology and hydraulic properties. Biologia, 61: 339-343. Go to original source...
  16. Kodešová R., Pavlů L., Kodeš V., Žigová A., Nikodem A. (2007): Impact of spruce forest and grass vegetation cover on soil micromorphology and hydraulic properties of organic matter horizon. Biologia, 62: 565-568. Go to original source...
  17. Kodešová R., Kočárek M., Kodeš V., Šimůnek J., Kozák J. (2008): Impact of soil micromorphological features on water flow and herbicide transport in soils. Vadose Zone Journal, 7: 798-809. Go to original source...
  18. Kodešová R., Vignozzi N., Rohošková M., Hájková T., Kočárek M., Pagliai M., Kozák J., Šimůnek J. (2009): Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types. Journal of Contaminant Hydrology, 104: 107-125. Go to original source... Go to PubMed...
  19. Köhne J.M., Köhne S., Šimůnek J. (2009a): A review of model applications for structured soils: a) water flow and tracer transport. Journal of Contaminant Hydrology, 104: 4-35. Go to original source... Go to PubMed...
  20. Köhne J.M., Köhne S., Šimůnek J. (2009b): A review of model applications for structured soils: b) pesticide transport. Journal of Contaminant Hydrology, 104: 36-60. Go to original source... Go to PubMed...
  21. Pagliai M., La Marca M., Lucamante G. (1983): Micromorphometric and micromorphological investigations of a clay loam soil in viticulture under zero and conventional tillage. Soil Science, 34: 391-403. Go to original source...
  22. Pagliai M., Marsili A., Servadio P., Vignozzi N., Pellegrini S. (2003): Changes in some physical properties of clay soil in central Italy following the passage of rubber tracked and wheeled tractors of medium power. Soil and Tillage Research, 73: 119-129. Go to original source...
  23. Pagliai M., Vignozzi N., Pellegrini S. (2004): Soil structure and the effect of management practices. Soil and Tillage Research, 79: 131-143. Go to original source...
  24. Pagliai M., Kutílek M. (2008): Soil micromorphology and soil hydraulics. In: Kapur S., Mermut A., Stoops G. (eds): New Trends in Soil Micromorphology. Springer-Verlag Berlin Heidelberg, 5-18. Go to original source...
  25. Perret J., Prasher S.O., Kantzas A., Langford C. (1999): Three-dimensional quantification of macropore networks in undisturbed soil cores. Soil Science Society of America Journal, 63: 1530-1543. Go to original source...
  26. Peth S., Horn R., Beckmann F., Donath T., Fischer J., Smucker A.J.M. (2008): Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. Soil Science Society of America Journal, 72: 897-907. Go to original source...
  27. Pires L.F., Cooper M., Casssaro F.A.M., Reichardt K., Bacchi O.O.S., Dias N.M.P (2008): Micromorphological analysis to characterize structure modifications of soil samples submitted to wetting and drying cycles. Catena, 72: 297-304. Go to original source...
  28. Rösslerová-Kodešová R., Kodeš V. (1999): Percolation model for interpretation of moisture retention curves for mono-modal and bi-modal soil porous systems. In: van Genuchten M.T., Leij F.J., Wu L. (eds): Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media. University of California, Riverside, 81-91.
  29. Sander T., Gerke H.H. (2007): Preferential flow patterns in paddy fields using a dye tracer. Vadose Zone Journal, 6: 105-115. Go to original source...
  30. Sander T., Gerke H.H., Rogasik H. (2008): Assessment of Chinese paddy-soil structure using X-ray computer tomography. Geoderma, 145: 303-314. Go to original source...
  31. Šimůnek J., Jarvis N.J., van Genuchten M.T., Gärdenäs A. (2003): Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology, 272: 14-35. Go to original source...
  32. Šimůnek J., Köhne M., Kodešová R., Šejna M. (2008a): Simulating nonequilibrium movement of water, solutes and particles using HYDRUS - A review of recent applications. Soil and Water Research, 3: 42-51. Go to original source...
  33. Šimůnek J., Šejna M., Saito H., Sakai M., van Genuchten M.T. (2008b): The HYDRUS-1D Software Package for Simulating the one-dimensional Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.0, HYDRUS Software Series 3. Department of Environmental Sciences, University of California Riverside, Riverside, California, USA, 315.
  34. Šimůnek J., van Genuchten M.T. (2008): Modeling nonequilibrium and preferential flow and transport with HYDRUS. Vadose Zone Journal, 7: 782-797. Go to original source...
  35. Vanderborght J., Gähwiller P., Flühler H. (2002): Identification of transport processes in soil cores using fluorescent tracers. Soil Science Society of America Journal, 66: 774-787. Go to original source...
  36. van Genuchten M.T. (1980): A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892-898. Go to original source...
  37. van Genuchten M.T., Wagenet R.J. (1989): Two-site/tworegion models for pesticide transport and degradation: theoretical development and analytical solutions. Soil Science Society of America Journal, 53: 1303-1310. Go to original source...
  38. Vogel H.J., Roth K. (2001): Quantitative morphology and network representation of soil pore structure. Advances in Water Resources, 24: 233-342. Go to original source...
  39. Votrubová J., Císlerová M., Amin M.H.G., Hall L.D. (2003): Recurrent ponded infiltration into structured soil: a magnetic resonance imaging study. Water Resources Research, 39: 1371. Go to original source...
  40. Watson K.W., Luxmoore R.J. (1986): Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Science Society of America Journal, 50: 578-582. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.