Plant Soil Environ., 2010, 56(12):574-579 | DOI: 10.17221/288/2010-PSE

Effect of nitrogen fertilization on metabolisms of essential and non-essential amino acids in field-grown grain maize (Zea mays L.)

T. Lošák1, J. Hlušek1, R. Filipčík1, L. Pospíšilová1, J. Maňásek2, K. Prokeš2, F. Buňka3, S. Kráčmar3, A. Martensson4, F. Orosz5
1 Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
2 KWS Osiva, Velké Meziříčí, Czech Republic
3 Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czech Republic
4 Faculty of Natural Resources and Agricultural Sciences, Swedish University of Agricultural Science Uppsala, Uppsala, Sweden
5 Faculty of Technical and Human Sciences, Sapientia - Hungarian University

In two-year field experiments, nitrogen (N) in the form of urea (0, 120 and 240 kg N/ha) was applied to grain maize (Zea mays L.) hybrid KWS 2376. The two-year mean content of total grain N at harvest was 1.54%. The highest N dose reduced most of the 17 amino acids (AA) analysed in the grain compared with the other treatments. Possible reasons for this could be an adverse effect on the tricarboxylic acid cycle or deficiency of carbon skeletons for the assimilation of NH4+ into amides and amino acids. The content of the limiting amino acid lysine was not influenced by N fertilisation, with a mean two-year content of 2.02 mg/g DM. Taking into account the differences in fertilisation, the effect of the year was seen in the maximal accumulation of amino acids serine, proline, methionine, threonine, arginine and lysine. Increasing rates of nitrogen reduced the accumulation of asparagine and glycine, and, on the contrary, increased the accumulation of tyrosine. Nitrogen rates have a significant effect on the maximal accumulation of valine, isoleucine, leucine, phenylalanine, histidine, cysteine and alanine and appeared as early as after the first increased rate of nitrogen (120 kg N/ha).

Keywords: corn; effect conditions year and nutrition; plant uptake; regulation biosynthesis amino acids; aleurone layer in seeds; metallothionen-like proteins; senescence

Published: December 31, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Lošák T, Hlušek J, Filipčík R, Pospíšilová L, Maňásek J, Prokeš K, et al.. Effect of nitrogen fertilization on metabolisms of essential and non-essential amino acids in field-grown grain maize (Zea mays L.). Plant Soil Environ. 2010;56(12):574-579. doi: 10.17221/288/2010-PSE.
Download citation

References

  1. Alehina N.D. (1992): Nitrogen assimilation in roots and leaves: specificity and dependence on environmental conditions. Physiology and Biochemistry of Cultural Plants, 24: 338-343.
  2. Atanasova E. (2008): Effect of nitrogen sources on the nitrogenous forms and accumulation of amino acid in head cabbage. Plant, Soil and Environment, 54: 66-71. Go to original source...
  3. Azevedo R.A., Lea P.J. (2001): Lysine metabolism in higher plants. Amino Acids, 20: 261-279. Go to original source... Go to PubMed...
  4. Baird S.K., Kurz T., Brunk U.T. (2006): Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochemical Journal, 394: 275-283. Go to original source... Go to PubMed...
  5. Chittenden C.G., Laidman D.L., Ahmad N., Wyn Jones R.G. (1978): Amino acids and quaternary nitrogen compounds in the germinating wheat grain. Phytochemistry, 17: 1209-1216. Go to original source...
  6. Eppendorfer W.H., Bille S.W., Patipanawattana S. (1985): Protein quality and amino acid-protein relationships of maize, sorghum and rice grain as influenced by nitrogen, phosphorus, potassium and soil moisture stress. Journal of the Science of Food and Agriculture, 36: 453-462. Go to original source...
  7. Hamer D.H. (1986): Metallothionein. Annual Review of Biochemistry, 55: 913-951. Go to original source... Go to PubMed...
  8. Harrigan G.G., Stork L.G., Riordan S.G., Reynolds T.L., Taylor J.P., Masucci J.D., Cao Y., LeDeaux J.R., Pandravada A., Glenn K.C. (2009): Impact of environmental and genetic factors on expression of maize gene classes: relevance to grain composition. Journal of Food Composition and Analysis, 22: 158-164. Go to original source...
  9. Kráčmar S., Gajdůšek S., Kuchtík J., Zeman L., Horák F., Doupovcová G., Matějková R., Kráčmarová E. (1998): Changes in amino acid composition of ewe's milk during the first month of lactation. Czech Journal of Animal Science, 43: 369-374.
  10. Lea P.J., Sodek L., Parry M.A.J., Sherry P.R., Halford N.G. (2007): Asparagine in plants. Annals of Applied Biology, 150: 1-26. Go to original source...
  11. Lošák T., Maňásek J., Hlušek J., Prokeš K., Filipčík R., Varga L. (2010): The effect of nitrogen fertilisation of grain maize at a very high supply of P, K, Ca and Mg in soil. Agrochemie, XIV: 13-16. (In Czech)
  12. Martínek P., Klem K., Váňová M., Bartáčková V., Večerková L., Bucher P., Hajšlová J. (2009): Effect of nitrogen nutrition, fungicide treatment and wheat genotype on free asparagine and reducing sugars content as precursors of akrylamide formation in brad. Plant, Soil and Environment, 55: 187-195. Go to original source...
  13. Mengel K., Kirkby E.A. (2001): Principles of Plant Nutrition. 5 th Edition. Kluwer Academic Publishers, Dordrecht, Boston, London, 849. Go to original source...
  14. Mossé J., Huet J.C. (1990): Amino acid composition and nutritional score for ten cereals and six legumes or oilseeds: causes and ranges of variations according to species and to seed nitrogen content. Sciences des Alimentations, 10: 151-173.
  15. Neuberg M., Pavlík M., Balík J., Kaliszová R., Pavlíková D. (2010a): The effect of ammonium nitrogen nutrition on the content of amino acids in red clover. Agrochemie, XIV: 9-12. (In Czech)
  16. Neuberg M., Pavlíková D., Pavlík M., Balík J. (2010b): The effect of different nitrogen nutrition on proline and asparagines content in plant. Plant, Soil and Environment, 56: 305-311. Go to original source...
  17. Oaks A. (1992): Re-evaluation of nitrogen assimilation in roots. Bioscience, 42: 103-111. Go to original source...
  18. Pavlík M., Pavlíková D., Balík J., Neuberg M. (2010a): The contents of amino acids and sterols in maize plants growing under different nitrogen conditions. Plant, Soil and Environment, 56: 125-132. Go to original source...
  19. Pavlík M., Pavlíková D., Staszková L., Neuberg M., Kaliszová R., Száková J., Tlustoš P. (2010b): The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicology and Environmental Safety, 73: 1309-1313. Go to original source... Go to PubMed...
  20. Pavlíková D., Pavlík M., Staszková L., Motyka V., Száková J., Tlustoš P., Balík J. (2008): Glutamate kinase as a potential biomarker of heavy metal stress in plants. Ecotoxicology and Environmental Safety, 70: 223-230. Go to original source... Go to PubMed...
  21. Parrott D.L., Martin J.M., Fischer A.M. (2010): Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. New Phytologist, 187: 313-331. Go to original source... Go to PubMed...
  22. Ridley W.P., Shillito R.D., Coats I., Steiner H.-Y., Shawgo M., Phillips A., Dussold P., Kurtyka L. (2004): Development of the international life sciences institute crop composition database. Journal of Food Composition and Analysis, 17: 423-438. Go to original source...
  23. Seebauer J.R., Moose S.P., Fabbri B.J., Crossland L.D., Below F.E. (2004): Amino acid metabolism in maize earshoots. Implications for assimilate preconditions and nitrogen signaling. Plant Physiology, 136: 4326-4334. Go to original source... Go to PubMed...
  24. Shewry P.R. (2007): Improving the protein content and composition of cereal grain. Journal of Cereal Science, 46: 239-250. Go to original source...
  25. Steinum T.M., Berner H.S., Stacy R.A.P., Salehian Z., Aalen R.B. (1998): Differential regulation on the barley (Hordeum vulgare) transcripts B22E and B12D in mature aleurone layers. Physiologia Plantarum, 102: 337-345. Go to original source...
  26. Ta T.C., Joy K.W., Ireland R.J. (1984): Amino acid metabolism in pea leaves. Utilization of nitrogen from amide and amino groups of 15N asparagines. Plant Physiology, 74: 822-826. Go to original source... Go to PubMed...
  27. Thanapornpoonpong S.N., Vearasilp S., Pawelzik E., Gorinstein S. (2008): Influence of various nitrogen applications on protein and amino acid profiles of amaranth and quinoa. Journal of Agricultural and Food Chemistry, 56: 11464-11470. Go to original source... Go to PubMed...
  28. Thiraporn R., Feil B., Stamp P. (2008): Effect of nitrogen fertilization on grain yield and accumulation of nitrogen, phosphorus and potassium in the grains of tropical maize. Journal of Agronomy and Crop Science, 169: 9-16. Go to original source...
  29. Tilsner J., Kassner N., Struck C., Lohaus G. (2005): Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta, 221: 328-338. Go to original source... Go to PubMed...
  30. Veech R.L. (2004): Tricarboxylic Acid Cycle. In: Lennarz W.J., Lane M.D.: Encyclopedia of Biological Chemistry, Volume 4. Academic Press, New York. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.