Plant Soil Environ., 2013, 59(2):62-67 | DOI: 10.17221/517/2012-PSE

Impact of cadmium and hydrogen peroxide on ascorbate-glutathione recycling enzymes in barley rootOriginal Paper

V. Zelinová, B. Bočová, J. Huttová, I. Mistrík, L. Tamás
Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic

We analyse the effect of Cd and H2O2 short-term treatments on the activity of ascorbate-glutathione recycling enzymes in barley root tip. Even a short transient exposure of barley roots to low 15 µmol Cd concentration caused a marked approximately 70% root growth inhibition. Higher Cd concentrations caused root growth cessation during the first 6 h after short-term Cd treatment. Similarly, a marked root growth inhibition was also detected after the short-term exposure of barley seedlings to H2O2. Our results indicate that root ascorbate pool is more sensitive to Cd treatment than glutathione pool. Rapid activation of dehydroascorbate reductase and monodehydroascorbate reductase is the important component of stress response to the Cd-induced alterations in barley root tips. H2O2 is probably involved in the Cd-induced activation of monodehydroascorbate reductase, but it is not involved in the Cd-induced increase of dehydroascorbate reductase activity.

Keywords: dehydroascorbate reductase; glutathione reductase; monodehydroascorbate reductase; root growth inhibition

Published: February 28, 2013  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zelinová V, Bočová B, Huttová J, Mistrík I, Tamás L. Impact of cadmium and hydrogen peroxide on ascorbate-glutathione recycling enzymes in barley root. Plant Soil Environ. 2013;59(2):62-67. doi: 10.17221/517/2012-PSE.
Download citation

References

  1. Arrigoni O., Dipierro S., Borraccino G. (1981): Ascorbate free radical reductase, a key enzyme of the ascorbic acid system. FEBS Letter, 125: 242-245. Go to original source...
  2. Benavides M.P., Gallego S.M., Tomaro M.L. (2005): Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17: 21-34. Go to original source...
  3. Bočová B., Huttová J., Liptáková Ľ., Mistrík I., Ollé M., Tamás L. (2012a): Impact of short-term cadmium treatment on catalase and ascorbate peroxidase activities in barley root tips. Biologia Plantarum, 56: 724-728. Go to original source...
  4. Bočová B., Mistrík I., Pavlovkin J., Tamás L. (2012b): Cadmium disrupts apoplastic ascorbate redox status in barley root tips. Acta Physyologiae Plantarum. DOI 10.1007/s11738-012-1030-y (In press) Go to original source...
  5. Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. Go to original source...
  6. Chen Z., Gallie D.R. (2005): Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiology, 138: 1673-1689. Go to original source... Go to PubMed...
  7. Chen F., Wu F., Dong J., Vincze E., Zhang G., Wang F., Huang Y., Wei K. (2007): Cadmium translocation and accumulation in developing barley grains. Planta, 227: 223-232. Go to original source... Go to PubMed...
  8. Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., Van Breusegem F. (2000): Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 57: 779-795. Go to original source... Go to PubMed...
  9. Eltayeb A.E., Kawano N., Badawi G.H., Kaminaka H., Sanekata T., Morishima I., Shibahara T., Inanaga S., Tanaka K. (2006): Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiologia Plantarum, 127: 57-65. Go to original source...
  10. Eltayeb A.E., Kawano N., Badawi G.H., Kaminaka H., Sanekata T., Shibahara T., Inanaga S., Tanaka K. (2007): Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta, 225: 1255-1264. Go to original source... Go to PubMed...
  11. Huttová J., Mistrík I., Ollé-Šimonovičová M., Tamás L. (2006): Cadmium induced changes in cell wall peroxidase isozyme pattern in barley root tip. Plant, Soil and Environment, 52: 250-253. Go to original source...
  12. Li F., Wu Q.Y., Sun Y.L., Wang L.Y., Yang X.H., Meng Q.W. (2010): Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologenmediated oxidative stress. Physiologia Plantarum, 139: 421-434. Go to original source... Go to PubMed...
  13. Neill S., Desikan R., Hancock J. (2002): Hydrogen peroxide signalling. Current Opinion in Plant Biology, 5: 388-395. Go to original source... Go to PubMed...
  14. Noctor G., Gomez L., Vanacker H., Foyer C.H. (2002): Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. Journal of Experimental Botany, 53: 1283-1304. Go to original source... Go to PubMed...
  15. Paradiso A., Berardino R., de Pinto M.C., Sanitá di Toppi L., Storelli M.M., Tommasi F., De Gara L. (2008): Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant and Cell Physiology, 49: 362-374. Go to original source... Go to PubMed...
  16. Sharma S.S., Dietz K.J. (2009): The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14: 43-50. Go to original source... Go to PubMed...
  17. Smirnoff N. (1996): The function and metabolism of ascorbic acid in plants. Annals of Botany, 78: 661-669. Go to original source...
  18. Smith I.K., Vierheller T.L., Thorne C.A. (1988): Assay of glutathione re ducta se in crude tissue homogenates using 5,5'-dithiobis(2-nitrobenzoic acid). Analytical Biochemistry, 175: 408-413. Go to original source... Go to PubMed...
  19. Sultana S., Khew C.Y., Morshed M.M., Namasivayam P., Napis S., Ho C.L. (2012): Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice. Journal of Plant Physiology, 169: 311-318. Go to original source... Go to PubMed...
  20. Vanacker H., Carver T.L.W., Foyer C.H. (1998): Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiology, 117: 1103-1114. Go to original source... Go to PubMed...
  21. Wu F.B., Chen F., Wei K., Zhang G.P. (2004): Effect of cadmium on free amino acids, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere, 57: 447-454. Go to original source... Go to PubMed...
  22. Yannarelli G.G., Fernández-Alvarez A.J., Santa-Cruz D.M., Tomaro M.L. (2007): Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry, 68: 505-512. Go to original source... Go to PubMed...
  23. Yin L., Wang S., Eltayeb A.E., Uddin M.I., Yamamoto Y., Tsuji W., Takeuchi Y., Tanaka K. (2010): Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta, 231: 609-621. Go to original source... Go to PubMed...
  24. Yoshida S., Tamaoki M., Shikano T., Nakajima N., Ogawa D., Ioki M., Aono M., Kubo A., Kamada H., Inoue Y., Saji H. (2006): Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant and Cell Physiology, 47: 304-308. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.