Plant Soil Environ., 2017, 63(8):335-341 | DOI: 10.17221/324/2017-PSE

Biosynthesis of waxy starch - a reviewReview

Evľen ©ÁRKA*,1, Václav DVOŘÁČEK2
1 Department of Carbohydrates and Cereals, University of Chemistry and Technology, Prague, Czech Republic
2 Crop Research Institute, Prague, Czech Republic

Starch comprises nearly linear amylose and branched amylopectin, whilst waxy starches are a special form, containing almost exclusively amylopectin. Modern techniques in plant breeding together with new data from starch biosynthesis research have enabled new food and non-food uses of waxy starches. This paper describes the basic ways of glucose conversion to waxy starch in plants. The recent evidence of ADP-Glc accumulation in cytosol of photosynthetically competent cells proposes a more complex pathway of starch biosynthesis based on a tight interconnection of sucrose and starch metabolic pathways. Also many studies indicate the existence of different pathways for the sucrose-starch conversion process in heterotrophic organs of dicotyledonous and monocotyledonous plants. At least six classes of starch synthases (SS) have been recognised in plants including soluble SS1, SS2, SS3, SS4, SS5, and granule bound SS (GBSS), required for the synthesis of short and long chains of amylopectin, till now. As to amylose (not-present in waxy starches), GBSS is the only starch synthase isoform encoded by the waxy genes situated at independent loci.

Keywords: waxy protein; Calvin-Benson cycle; sucrose-starch conversion; starch-branching enzyme; adenosine diphosphoglucose

Published: August 31, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
©ÁRKA E, DVOŘÁČEK V. Biosynthesis of waxy starch - a review. Plant Soil Environ. 2017;63(8):335-341. doi: 10.17221/324/2017-PSE.
Download citation

References

  1. Ahuja G., Jaiswal S., Hucl P., Chibbar R.N. (2014): Wheat genome specific granule-bound starch synthase I differentially influence grain starch synthesis. Carbohydrate Polymers, 114: 87-94. Go to original source... Go to PubMed...
  2. Bahaji A., Li J., Sánchez-López Á.M., Baroja-Fernández E., Muñoz F.J., Ovecka M., Almagro G., Montero M., Ezquer I., Etxeberria E., Pozueta-Romero J. (2014): Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnology Advances, 32: 87-106. Go to original source... Go to PubMed...
  3. Biselli C., Cavalluzzo D., Perrini R., Gianinetti A., Bagnaresi P., Urso S., Orasen G., Desiderio F., Lupotto E., Cattivelli L., Valé G. (2014): Improvement of marker-based predictability of apparent amylose content in japonica rice through GBSSI allele mining. Rice, 7: 1. Go to original source... Go to PubMed...
  4. Bowsher C.G., Scrase-Field E.F., Esposito S., Emes M.J., Tetlow I.J. (2007): Characterization of ADP-glucose transport across the cereal endosperm amyloplast envelope. Journal of Experimental Botany, 58: 1321-1332. Go to original source... Go to PubMed...
  5. Ceballos H., Sánchez T., Morante N., Fregene M., Dufour D., Smith A.M., Denyer K., Pérez J.C., Calle F., Mestres C. (2007): Discovery of an amylose-free starch mutant in cassava (Manihot esculenta Crantz). Journal of Agricultural and Food Chemistry, 55: 7469-7476. Go to original source... Go to PubMed...
  6. Chao S., Sharp P.J., Worland A.J., Warham E.J., Koebner R.M., Gale M.D. (1989): RFLP-based genetic maps of wheat homeologous group 7 chromosomes. Theoretical and Applied Genetics, 78: 495-504. Go to original source... Go to PubMed...
  7. Chen G.X., Zhu J.T., Zhou J.W., Subburaj S., Zhang M., Han C.X., Hao P.C., Li X.H., Yan Y.M. (2014): Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: Comparison with common wheat and Aegilops peregrina. BMC Plant Biology, 14: 198. Go to original source... Go to PubMed...
  8. Denyer K., Waite D., Motawia S., Møller B.L., Smith A.M. (1999): Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochemical Journal, 340 (Pt 1): 183-191. Go to original source...
  9. Denyer K., Johnson P., Zeeman S., Smith A.M. (2001): The control of amylose synthesis. Journal of Plant Physiology, 158: 479-487. Go to original source...
  10. Geigenberger P. (2011): Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiology, 155: 1566-1577. Go to original source... Go to PubMed...
  11. Geigenberger P., Stitt M., Fernje A.R. (2004): Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant, Cell and Environment, 27: 655-673. Go to original source...
  12. Graybosch R.A., Baenziger P.S., Santra D.K., Regassa T., Jin Y., Kolmer J., Wegulo S., Bai G.H., Amand P.St., Chen X.M., Seabourn B., Dowell F., Bowden R., Marshall D.M. (2014): Registration of 'Mattern' waxy (amylose-free) winter wheat. Journal of Plant Registrations, 8: 43-48. Go to original source...
  13. Grimaud F., Rogniaux H., James M.G., Myers A.M., Planchot V. (2008): Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. Journal of Experimental Botany, 59: 3395-3406. Go to original source... Go to PubMed...
  14. Hovenkamp-Hermelink J.H.M., Jacobsen E., Ponstein A.S., Visser R.G.F., Vos-Scheperkeuter G.H., Bijmolt E.W., de Vries J.N., Witholt B., Feenstra W.J. (1987): Isolation of an amylose-free starch mutant of the potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 75: 217-221. Go to original source...
  15. Hung P.V., Maeda T., Morita N. (2007): Study on physicochemical characteristics of waxy and high-amylose wheat starches in comparison with normal wheat starch. Starch, 59: 125-131. Go to original source...
  16. Kammerer B., Fischer K., Hilpert B., Schubert S., Gutensohn M., Weber A., Flügge U.-I. (1998): Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: The glucose 6-phosphate/phosphate antiporter. The Plant Cell, 10: 105-117. Go to original source... Go to PubMed...
  17. Kirchberger S., Leroch M., Huynen M.A., Wahl M., Neuhaus H.E., Tjaden J. (2007): Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays. The Journal of Biological Chemistry, 282: 22481-22491. Go to original source... Go to PubMed...
  18. Liu H.M., Yu G.L., Wei B., Wang Y.B., Zhang J.J., Hu Y.F., Liu Y.H., Yu G.W., Zhang H.Y., Huang Y.B. (2015): Identification and phylogenetic analysis of a novel starch synthase in maize. Frontiers in Plant Science, 6: 1-13. Go to original source... Go to PubMed...
  19. Murray B.S., Phisarnchananan N. (2014): The effect of nanoparticles on the phase separation of waxy corn starch + locust bean gum or guar gum. Food Hydrocolloids, 42: 92-99. Go to original source...
  20. Nakamura T., Yamamori M., Hirano H., Hidaka S., Nagamine T. (1995): Production of waxy (amylose-free) wheats. Molecular and General Genetics MGG, 248: 253-259. Go to original source... Go to PubMed...
  21. Ortiz-Marchena M.I., Albi T., Lucas-Reina E., Said F.E., RomeroCampero F.J., Cano B., Ruiz M.T., Romero J.M., Valverde F. (2014): Photoperiodic control of carbon distribution during the floral transition in Arabidopsis. The Plant Cell, 26: 565-584. Go to original source... Go to PubMed...
  22. Ovecka M., Bahaji A., Muñoz F.J., Almagro G., Ezquer I., BarojaFernández E., Li J., Pozueta-Romero J. (2012): A sensitive method for confocal fluorescence microscopic visualization of starch granules in iodine stained samples. Plant Signaling and Behavior, 7: 1146-1150. Go to original source... Go to PubMed...
  23. Pusadee T., Oupkaew P., Rerkasem B., Jamjod S., Schaal B.A. (2014): Natural and human-mediated selection in a landrace of Thai rice (Oryza sativa). Annals of Applied Biology, 165: 280-292 Go to original source...
  24. Ral J.P., Colleoni C., Wattebled F., Dauvillée D., Nempont C., Deschamps P., Li Z.Y., Morell M.K., Chibbar R., Purton S., d'Hulst C., Ball S.G. (2006): Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii. Plant Physiology, 142: 305-317. Go to original source... Go to PubMed...
  25. Roldán I., Wattebled F., Mercedes Lucas M., Delvallé D., Planchot V., Jiménez S., Pérez R., Ball S., D'Hulst C., Mérida A. (2007): The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. The Plant Journal, 49: 492-504. Go to original source... Go to PubMed...
  26. Rohde W., Becker D., Salamini F. (1988): Structural analysis of the waxy locus from Hordeum vulgare. Nucleic Acids Research, 16: 7185. Go to original source... Go to PubMed...
  27. Sano Y. (1984): Differential regulation of waxy gene expression in rice endosperm. Theoretical and Applied Genetics, 68: 467-473. Go to original source... Go to PubMed...
  28. ©árka E., Dvořáček V. (2017): New processing and applications of waxy starch (a review). Journal of Food Engineering, 206: 77-87. Go to original source...
  29. Seung D., Soyk S., Coiro M., Maier B.A., Eicke S., Zeeman S.C. (2015): Protein targeting to starch is required for localising granule-bound starch synthase to starch granules and for normal amylose synthesis in Arabidopsis. PLOS Biology, 1002080: 1-29. Go to original source... Go to PubMed...
  30. Shapter F.M., Eggler P., Lee L.S., Henry R.J. (2009): Variation in granule bound starch synthase I (GBSSI) loci amongst Australian wild cereal relatives (Poaceae). Journal of Cereal Science, 49: 4-11. Go to original source...
  31. Shure M., Wessler S., Fedoroff N. (1983): Molecular identification and isolation of the Waxy locus in maize. Cell, 35: 225-233. Go to original source... Go to PubMed...
  32. Smith S.M., Fulton D.C., Chia T., Thorneycroft D., Chapple A., Dunstan H., Hylton C., Zeeman S.C., Smith A.M. (2004): Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiology, 136: 2687-2699. Go to original source... Go to PubMed...
  33. Szydlowski N., Ragel P., Raynaud S., Lucas M.M., Roldán I., Montero M., Muñoz F.J., Ovecka M., Bahaji A., Planchot V., Pozueta-Romerod J., D'Hulst C., Mérida Á. (2009): Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. The Plant Cell, 21: 2443-2457. Go to original source... Go to PubMed...
  34. Tatge H., Marshall J., Martin C., Edwards E.A., Smith A.M. (1999): Evidence that amylose synthesis occurs within the matrix of the starch granule in potato tubers. Plant, Cell and Environment, 22: 543-550. Go to original source...
  35. Tjaden J., Möhlmann T., Kampfenkel K., Henrichs G., Neuhaus H.E. (1998): Altered plastidic ATP/ADP-transporter activity influences potato (Solanum tuberosum L.) tuber morphology, yield and composition of starch. The Plant Journal, 16: 531-540. Go to original source...
  36. Wang Z.B., Li W.H., Qi J.C., Shi P.C., Yin Y.G. (2014): Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. Journal of Food Science and Technology, 51: 419-429. Go to original source... Go to PubMed...
  37. Wang Z.Y., Zheng F.Q., Shen G.Z., Gao J.P., Snustad D.P., Li M.G., Zhang J.L., Hong M.M. (1995): The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. The Plant Journal, 7: 613-622. Go to original source... Go to PubMed...
  38. Wattebled F., Buléon A., Bouchet B., Ral J.P., Liénard L., Delvallé D., Binderup K., Dauvillée D., Ball S., D'Hulst C. (2002): Granule-bound starch synthase I. A major enzyme involved in the biogenesis of B-crystallites in starch granules. European Journal of Biochemistry, 269: 3810-3820. Go to original source... Go to PubMed...
  39. Yamamori M. (2009): Amylose content and starch properties generated by five variant Wx alleles for granule-bound starch synthase in common wheat (Triticum aestivum L.). Euphytica, 165: 607-614. Go to original source...
  40. Yamamori M., Yamamoto K. (2011): Effects of two novel Wx-A1 alleles of common wheat (Triticum aestivum L.) on amylose and starch properties. Journal of Cereal Science, 54: 229-235. Go to original source...
  41. Yan H.B., Pan X.X., Jiang H.W., Wu G.J. (2009): Comparison of the starch synthesis genes between maize and rice: Copies, chromosome location and expression divergence. Theoretical and Applied Genetics, 119: 815-825. Go to original source... Go to PubMed...
  42. Zeeman S.C., Kossmann J., Smith A.M. (2010): Starch: Its metabolism, evolution, and biotechnological modification in plants. Annual Review of Plant Biology, 61: 209-234. Go to original source... Go to PubMed...
  43. Zhang H., Zhang W., Xu C., Zhou X. (2013): Morphological features and physicochemical properties of waxy wheat starch. International Journal of Biological Macromolecules, 62: 304-309. Go to original source... Go to PubMed...
  44. Zhou Z.K., Zhang Y., Chen X.S., Zhang M., Wang Z.W. (2014): Multi-scale structural and digestion properties of wheat starches with different amylose contents. International Journal of Food Science and Technology, 49: 2619-2627. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.