Plant Soil Environ., 2019, 65(11):549-555 | DOI: 10.17221/330/2019-PSE

Hybrid rice produces a higher yield and emits less methaneOriginal Paper

Ping Liao1, Yanni Sun1, Yu Jiang2, 3, Yongjun Zeng1, Ziming Wu*,1, Shan Huang*,1
1 Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, P.R. China
2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture,

Hybrid rice has a higher yield potential than inbred rice, but the difference in CH4 emissions between the two groups is still unclear, particularly regarding straw incorporation. In the present study, a pot experiment was conducted to examine the difference in CH4 emissions between inbred (Huanghuazhan) (IR) and hybrid (Rongyouhuazhan) (HR) rice cultivars, both with or without straw incorporation in subtropical China. The results showed that HR produced both greater grain yield and biomass than IR. In contrast, when compared with IR, HR reduced the cumulative CH4 emissions by an average of 18.6%. No significant interactions between rice cultivars and straw management on yield or CH4 emissions were found. HR significantly increased the abundance of methanogens and methanotrophs by 38.9% and 93.4% relative to IR, respectively, thereby reducing CH4 concentrations in the soil pore water. Therefore, we suggest that cultivar rice can produce a higher yield and better mitigate CH4 emissions when compared to inbred rice, regardless of the use of straw incorporation.

Keywords: CH4 oxidation; greenhouse gas; global warming; Oryza sativa L.; methanogenesis

Published: November 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Liao P, Sun Y, Jiang Y, Zeng Y, Wu Z, Huang S. Hybrid rice produces a higher yield and emits less methane. Plant Soil Environ. 2019;65(11):549-555. doi: 10.17221/330/2019-PSE.
Download citation

References

  1. Bhattacharyya P., Dash P.K., Swain C.K., Padhy S.R., Roy K.S., Neogi S., Berliner J., Adak T., Pokhare S.S., Baig M.J., Mohapatra T. (2019): Mechanism of plant mediated methane emission in tropical lowland rice. Science of The Total Environment, 651: 84-92. Go to original source... Go to PubMed...
  2. Carlson K.M., Gerber J.S., Mueller N.D., Herrero M., MacDonald G.K., Brauman K.A., Havlik P., O'Connell C.S., Johnson J.A., Saatchi S., West P.C. (2017): Greenhouse gas emissions intensity of global croplands. Nature Climate Change, 7: 63-68. Go to original source...
  3. Conrad R. (2007): Microbial ecology of methanogens and methanotrophs. Advances in Agronomy, 96: 1-63. Go to original source...
  4. FAOSTAT (2017): Available at: http://www.fao.org/faostat/en/#data/QC. (accessed 15 May 2019)
  5. Gutierrez J., Kim S.Y., Kim P.J. (2013): Effect of rice cultivar on CH4 emissions and productivity in Korean paddy soil. Field Crops Research, 146: 16-24. Go to original source...
  6. Henckel T., Friedrich M., Conrad R. (1999): Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16s rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Applied and Environmental Microbiology, 65: 1980-1990. Go to original source... Go to PubMed...
  7. Huang L.Y., Sun F., Yuan S., Peng S.B., Wang F. (2018): Different mechanisms underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions. Field Crops Research, 216: 150-157. Go to original source...
  8. Huang M., Jiang P., Shan S.L., Gao W., Ma G.H., Zou Y.B., Uphoff N., Yuan L.P. (2017): Higher yields of hybrid rice do not depend on nitrogen fertilization under moderate to high soil fertility conditions. Rice, 10: 43. Go to original source... Go to PubMed...
  9. Huang S., Zeng Y.J., Wu J.F., Shi Q.H., Pan X.H. (2013): Effect of crop residue retention on rice yield in China: A meta-analysis. Field Crops Research, 154: 188-194. Go to original source...
  10. Hussain S., Peng S.B., Fahad S., Khaliq A., Huang J.L., Cui K.H., Nie L.X. (2015): Rice management interventions to mitigate greenhouse gas emissions: A review. Environmental Science and Pollution Research, 22: 3342-3360. Go to original source... Go to PubMed...
  11. IPCC (2013): Climate change 2013: The physical science basis. In: Stocker T.F., Qin D., Plattner G.K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (eds.): Working Group I Contribution to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York, Cambridge University Press, 1535.
  12. IUSS Working Group, WRB (2006): World Reference Base for Soil Resources 2006.World Soil Resources Reports, No. 103. Rome, Food and Agriculture Organization.
  13. Jiang Y., Wang L.L., Yan X.J., Tian Y.L., Deng A.X., Zhang W.J. (2013): Super rice cropping will enhance rice yield and reduce CH4 emission: A case study in Nanjing, China. Rice Science, 20: 427-433. Go to original source...
  14. Jiang P., Xie X.B., Huang M., Zhou X.F., Zhang R.C., Chen J.N., Wu D.D., Xia B., Xiong H., Xu F.X., Zou Y.B. (2016a): Potential yield increase of hybrid rice at five locations in Southern China. Rice, 9: 11. Go to original source... Go to PubMed...
  15. Jiang Y., Tian Y.L., Sun Y.N., Zhang Y., Hang X.N., Deng A.X., Zhang J., Zhang W.J. (2016b): Effect of rice panicle size on paddy field CH4 emissions. Biology and Fertility of Soils, 52: 389-399. Go to original source...
  16. Jiang Y., van Groenigen K.J., Huang S., Hungate B.A., van Kessel C., Hu S.J., Zhang J., Wu L.H., Yan X.J., Wang L.L., Chen J., Hang X.N., Zhang Y., Horwath W.R., Ye R.Z., Linquist B.A., Song Z.W., Zheng C.Y., Deng A.X., Zhang W.J. (2017): Higher yields and lower methane emissions with new rice cultivars. Global Change Biology, 23: 4728-4738. Go to original source... Go to PubMed...
  17. Jiang Y., Liao P., van Gestel N., Sun Y.N., Zeng Y.J., Huang S., Zhang W.J., van Groenigen K.J. (2018): Lime application lowers the global warming potential of a double rice cropping system. Geoderma, 325: 1-8. Go to original source...
  18. Jiang Y., Qian H.Y., Huang S., Zhang X.Y., Wang L., Zhang L., Shen M.X., Xiao X.P., Chen F., Zhang H.L., Lu C.Y., Li C., Zhang J., Deng A.X., van Groenigen K.J., Zhang W.J. (2019): Acclimation of methane emissions from rice paddy fields to straw addition. Science Advances, 5: eaau9038. Go to original source...
  19. Liao P., Huang S., van Gestel N., Zeng Y.J., Wu Z.M., van Groenigen K.J. (2018): Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Research, 216: 217-224. Go to original source...
  20. Liu Z., Sun K., Zheng B., Dong Q.L., Li G., Han H.F., Li Z.J., Ning T.Y. (2019): Impacts of straw, biogas slurry, manure and mineral fertilizer applications on several biochemical properties and crop yield in a wheat-maize cropping system. Plant, Soil and Environment, 65: 1-8. Go to original source...
  21. Luton P.E., Wayne J.M., Sharp R.J., Riley P.W. (2002): The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 148: 3521-3530. Go to original source... Go to PubMed...
  22. Ma G.H., Yuan L.P. (2015): Hybrid rice achievements, development and prospect in China. Journal of Integrative Agriculture, 14: 197-205. Go to original source...
  23. Ma K., Qiu Q.F., Liu Y.H. (2010): Microbial mechanism for rice variety control on methane emission from rice field soil. Global Change Biology, 16: 3085-3095. Go to original source...
  24. Ma Y.C., Wang J.Y., Zhou W., Yan X.Y., Xiong Z.Q. (2012): Greenhouse gas emissions during the seedling stage of rice agriculture as affected by cultivar type and crop density. Biology and Fertility of Soils, 48: 589-595. Go to original source...
  25. Megonigal J.P., Hines M.E., Visscher P.T. (2004): Anaerobic metabolism: Linkages to trace gases and aerobic processes. In: Schlesinger W.H. (ed.): Biogeochemistry. Oxford, Elsevier-Pergamon, 317-424. Go to original source...
  26. Murphy R.P., Montes-Molina J.A., Govaerts B., Six J., van Kessel C., Fonte S.J. (2016): Crop residue retention enhances soil properties and nitrogen cycling in smallholder maize systems of Chiapas, Mexico. Applied Soil Ecology, 103: 110-116. Go to original source...
  27. Peng S.B., Khush G.S., Virk P., Tang Q.Y., Zou Y.B. (2008): Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 108: 32-38. Go to original source...
  28. Sun L.M., Hussain S., Liu H.Y., Peng S.B., Huang J.L., Cui K.H., Nie L.X. (2015): Implications of low sowing rate for hybrid rice varieties under dry direct-seeded rice system in Central China. Field Crops Research, 175: 87-95. Go to original source...
  29. Wang W., Chen C.L., Wu X.H., Xie K.J., Yin C.M., Hou H.J., Xie X.L. (2019): Effects of reduced chemical fertilizer combined with straw retention on greenhouse gas budget and crop production in double rice fields. Biology and Fertility of Soils, 55: 89-96. Go to original source...
  30. Yuan L.P. (2014): Development of hybrid rice to ensure food security. Rice Science, 21: 1-2. Go to original source...
  31. Yuan S., Nie L.X., Wang F., Huang J.L., Peng S.B. (2017): Agronomic performance of inbred and hybrid rice cultivars under simplified and reduced-input practices. Field Crops Research, 210: 129-135. Go to original source...
  32. Yuan Y., Dai X.Q., Wang H.M. (2019): Fertilization effects on CH4, N2O and CO2 fluxes from a subtropical double rice cropping system. Plant, Soil and Environment, 65: 189-197. Go to original source...
  33. Zhang Y., Jiang Y., Li Z.J., Zhu X.C., Wang X.F., Chen J., Hang X.N., Deng A.X., Zhang J., Zhang W.J. (2015): Aboveground morphological traits do not predict rice variety effects on CH4 emissions. Agriculture, Ecosystems and Environment, 208: 86-93. Go to original source...
  34. Zheng H.B., Fu Z.Q., Zhong J., Long W.F. (2018): Low methane emission in rice cultivars with high radial oxygen loss. Plant and Soil, 431: 119-128. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.