Plant Soil Environ., 2020, 66(10):533-541 | DOI: 10.17221/441/2020-PSE
Salicylic acid ameliorates salinity tolerance in maize by regulation of phytohormones and osmolytesOriginal Paper
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
Salinity is one of the most widespread stresses responsible for water and soil pollution across the globe. Salicylic acid (SA) has a major role in defence responses against various abiotic stresses. In the current study, SA (0.05 mmol) influences were evaluated in mitigation of the negative impact of salinity (40 and 80 mmol NaCl) in the maize plant. NaCl stress-induced significant accumulation of organic osmolytes (total soluble sugars (TSS), total soluble protein (TSP), and proline) by 35.6, 66.2, and 89.2%, respectively, with 80 mmol NaCl. In addition, salinity is also responsible for the elevated accumulation of inorganic osmolytes (Na+ and Na+/K+ ratio) by 202.4% and 398.8%, respectively, and for the reduction in the K+ and Ca2+ levels by 48.6% and 58.9%, respectively, with 80 mmol NaCl. Moreover, salinity stress reduced phytohormones (indoleacetic acid (IAA) and gibberellic acid (GA3)) by 48.8% and 59.8%, respectively, with 80 mmol NaCl; however, abscisic acid (ABA) was increased by 340.5% with 80 mmol NaCl. Otherwise, SA application caused an additional enhancement in TSS, TSP, proline, K+, Ca2+, IAA, and GA3 contents but decreased the Na+, Na+/K+ ratio, and ABA to an appreciable level. In conclusion, SA pre-soaking mitigates the negative impact of NaCl toxicity in maize through the regulation of phytochromes and various organic and inorganic osmolytes, which may ameliorate salinity tolerance in maize.
Keywords: soil salinisation; salt stress; osmoprotectant; adaptation; salt-sensitive C4 species; organic and inorganic solutes; Zea mays L.
Published: October 31, 2020 Show citation
References
- Ahanger M.A., Agarwal R.M. (2017): Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.). Protoplasma, 254: 1471-1486.
Go to original source...
Go to PubMed...
- Ahmad P., Alyemenia M.N., Ahanger M.A., Egamberdieva D., Wijaya L., Alam P. (2018): Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in faba bean (Vicia faba L.) seedlings under NaCl toxicity. Russian Journal of Plant Physiology, 65: 104-114.
Go to original source...
- Ahmadi S.H., Vafaee Y., Saba M.K., Zarei L. (2018): Mitigation influence of salicylic acid on physiological attributes of tomato cv. Namib under salinity stress in soilless culture. Journal of Science and Technology of Greenhouse Culture, 9: 79-91.
Go to original source...
- Ahmed S., Ahmed S., Roy S.K., Woo S.H., Sonawane K.D., Shohael A.M. (2019): Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agriculture, 4: 361-373.
Go to original source...
- Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
Go to original source...
- Cai Z.Q., Gao Q. (2020): Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biology, 20: 70.
Go to original source...
Go to PubMed...
- Chakdar H., Borse D.N., Verma S., Choudhary P., Das S. (2019): Microbial management of crop salinity stress: mechanisms, applications, and prospects. In: Akhtar M.S. (ed.): Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches. Singapore, Springer. ISBN 978-981-13-8805-7
Go to original source...
- Chen K., Li G.J., Bressan R.A., Song C.P., Zhu J.K., Zhao Y. (2020): Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62: 25-54.
Go to original source...
Go to PubMed...
- Daniel W.W., Cross C.L. (eds.) (1995): Biostatistics: A Foundation for Analysis in the Health Science. 6th Edition. New York, John Wiley & Sons. ISBN: 978-1-119-49657-1
Go to original source...
- Darko E., Végh B., Khalil R., Marček T., Szalai G., Pál M., Janda T. (2019): Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions. PLoS One, 14: e0226151.
Go to original source...
Go to PubMed...
- Elhakem A.H. (2019): Impact of salicylic acid application on growth, photosynthetic pigments and organic osmolytes response in Mentha arvensis under drought stress. Journal of Biological Sciences, 19: 372-380.
Go to original source...
- El-Katony T.M., El-Bastawisy Z.M., El-Ghareeb S.S. (2019): Timing of salicylic acid application affects the response of maize (Zea mays L.) hybrids to salinity stress. Heliyon, 5: e01547.
Go to original source...
Go to PubMed...
- Iqbal M., Ashraf M. (2013): Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environmental and Experimental Botany, 86: 76-85.
Go to original source...
- Jain M., Vaishnav J. (2019): Salt stress induced effects on biochemical parameters in etiolated maize leaf segments during greening. African Journal of Biological Sciences, 1: 22-31.
Go to original source...
- Jalil S.U., Ansari M.I. (2019): Role of phytohormones in recuperating salt stress. In: Akhtar M.S. (ed.): Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches. Singapore, Springer. ISBN 978-981-13-8805-7
Go to original source...
- Jini D., Joseph B. (2017): Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science, 24: 97-108.
Go to original source...
- Khan M.I.R., Iqbal N., Masood A., Per T.S., Khan N.A. (2013): Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling and Behavior, 8: e26374.
Go to original source...
Go to PubMed...
- Koo Y.M., Heo A.Y., Choi H.W. (2020): Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36: 1-10.
Go to original source...
Go to PubMed...
- Kumar I.S., Rao R.S., Vardhini B.V. (2015): Role of phytohormones during salt stress tolerance in plants. Current Trends in Biotechnology and Pharmacy, 9: 334-343.
Go to original source...
- Lee M.R., Kim C.S., Park T., Choi Y.S., Lee K.H. (2018): Optimization of the ninhydrin reaction and development of a multiwell plate-based highthroughput proline detection assay. Analytical Biochemistry, 556: 57-62.
Go to original source...
Go to PubMed...
- Liu J., Li L.Y., Yuan F., Chen M. (2019): Exogenous salicylic acid improves the germination of Limonium bicolor seeds under salt stress. Plant Signaling and Behavior, 14: e1644595.
Go to original source...
Go to PubMed...
- Liu W., Zhang Y., Yuan X., Xuan Y., Gao Y., Yan Y. (2016): Exogenous salicylic acid improves salinity tolerance of Nitraria tangutorum. Russian Journal of Plant Physiology, 63: 132-142.
Go to original source...
- Müller M., Munné-Bosch S. (2011): Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods, 7: 37.
Go to original source...
Go to PubMed...
- Nahrjoo M., Sedaghathoor S. (2018): The induction of salinity stress resistance in rosemary as influenced by salicylic acid and jasmonic acid. Communications in Soil Science and Plant Analysis, 49: 1761-1773.
Go to original source...
- Riffat A., Ahmad M.S.A. (2018): Changes in organic and inorganic osmolytes of maize (Zea mays L.) by sulfur application under salt stress conditions. Journal of Agricultural Science; 10: 543- 561.
Go to original source...
- Shaki F., Maboud H.E., Niknam V. (2019): Effects of salicylic acid on hormonal cross talk, fatty acids profile, and ions homeostasis from salt-stressed safflower. Journal of Plant Interactions, 14: 340-346.
Go to original source...
- Sharma A., Sidhu G.P.S., Araniti F., Bali A.S., Shahzad B., Tripathi D.K., Brestic M., Skalicky M., Landi M. (2020): The role of salicylic acid in plants exposed to heavy metals. Molecules, 25: 540-562.
Go to original source...
Go to PubMed...
- Sharma A., Shahzad B., Kumar V., Kohli S.K., Sidhu G.P.S., Bali A.S., Handa N., Kapoor D., Bhardwaj R., Zheng B.S. (2019): Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9: 285-320.
Go to original source...
Go to PubMed...
- Sohag A.A.M., Tahjib-Ul-Arif M., Brestic M., Afrin S., Sakil M.A., Hossain M.T., Hossain M.A., Hossain M.A. (2020): Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant, Soil and Environment, 66: 7-13.
Go to original source...
- Wolf B. (1982): A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis, 13: 1035-1059.
Go to original source...
- Yoshida S., Forno D.A., Cock J.H., Gomez K.A. (1976): Laboratory Manual for Physiological Studies of Rice. Los Banos, International Rice Research Institute.
- Zhao Y., Gao J.H., Kim J.I., Chen K., Bressan R.A., Zhu J.K. (2017): Control of plant water use by ABA induction of senescence and dormancy: an overlooked lesson from evolution. Plant and Cell Physiology, 58: 1319-1327.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.