Plant Soil Environ., 2022, 68(1):49-58 | DOI: 10.17221/411/2021-PSE

Nitrogen addition turns a temperate peatland from a near-zero source into a strong sink of nitrous oxideOriginal Paper

Boli Yi1,2,3, Fan Lu1,2,3, Zhao-Jun Bu*,1,2,3
1 Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, P.R. China
2 State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, P.R. China
3 Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change

Peatlands, as important global nitrogen (N) pools, are potential sources of nitrous oxide (N2O) emissions. We measured N2O flux dynamics in Hani peatland in a growing season with simulating warming and N addition for 12 years in the Changbai Mountains, Northeastern China, by using static chamber-gas chromatography. We hypothesised that warming and N addition would accelerate N2O emissions from the peatland. In a growing season, the peatland under natural conditions showed near-zero N2O fluxes and warming increased N2O emissions but N addition greatly increased N2O absorption compared with control. There was no interaction between warming and N addition on N2O fluxes. Pearson correlation analysis showed that water table depth was one of the main environmental factors affecting N2O fluxes and a positive relationship between them was observed. Our study suggests that the N2O source function in natural temperate peatlands maybe not be so significant as we expected before; warming can increase N2O emissions, but a high dose of N input may turn temperate peatlands to be strong sinks of N2O, and global change including warming and nitrogen deposition can alter N2O fluxes via its indirect effect on hydrology and vegetation in peatlands.

Keywords: climate change; greenhouse gas; denitrification; terrestrial ecosystem; Sphagnum

Published: January 15, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Yi B, Lu F, Bu Z. Nitrogen addition turns a temperate peatland from a near-zero source into a strong sink of nitrous oxide. Plant Soil Environ. 2022;68(1):49-58. doi: 10.17221/411/2021-PSE.
Download citation

References

  1. Aerts R., Wallen B., Malmer N. (1992): Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. Journal of Ecology, 80: 131-140. Go to original source...
  2. Alm J., Schulman L., Walden J., Nykänen H., Martikainen P.J., Silvola J. (1999): Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology, 80: 161-174. Go to original source...
  3. Amha Y., Bohne H. (2011): Denitrification from the horticultural peats: effects of pH, nitrogen, carbon, and moisture contents. Biology and Fertility of Soils, 47: 293-302. Go to original source...
  4. Bowden W.B. (1986): Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: an assessment of their impacts on local and global nitrogen budgets. Biogeochemistry, 2: 249- 279. Go to original source...
  5. Bragazza L., Tahvanainen T., Kutnar L., Rydin H., Limpens J., Hájek M., Grosvernier P., Hájek T., Hajkova P., Hansen I. (2004): Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 163: 609-616. Go to original source... Go to PubMed...
  6. Bu Z.-J., Rydin H., Chen X. (2011): Direct and interaction-mediated effects of environmental changes on peatland bryophytes. Oecologia, 166: 555-563. Go to original source... Go to PubMed...
  7. Bubier J.L., Moore T.R., Bledzki L.A. (2007): Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13: 1168-1186. Go to original source...
  8. Buchen C., Roobroeck D., Augustin J., Behrendt U., Boeckx P., Ulrich A. (2019): High N2O consumption potential of weakly disturbed fen mires with dissimilar denitrifier community structure. Soil Biology and Biochemistry, 130: 63-72. Go to original source...
  9. Burgin A.J., Groffman P.M. (2012): Soil O2 controls denitrification rates and N2O yield in a riparian wetland. Journal of Geophysical Research-Biogeosciences, 117: 1-10. Go to original source...
  10. Chaddy A., Melling L., Ishikura K., Hatano R. (2019): Soil N2O emissions under different N rates in an oil palm plantation on tropical peatland. Agriculture, 9: 1-18. Go to original source...
  11. Chen X., McGowan S., Bu Z.J., Yang X.D., Cao Y.M., Bai X., Zeng L.H., Liang J., Qiao Q.L. (2020): Diatom-based water-table reconstruction in Sphagnum peatlands of northeastern China. Water Research, 174: 115648. Go to original source... Go to PubMed...
  12. Cheng S., Wang L., Fang H., Yu G., Yang X., Li X., Si G., Geng J., He S., Yu G. (2016): Nonlinear responses of soil nitrous oxide emission to multi-level nitrogen enrichment in a temperate needle-broadleaved mixed forest in Northeast China. Catena, 147: 556-563. Go to original source...
  13. Clymo R.S., Hayward P.M. (1982): The ecology of Sphagnum. In: Smith A.J.E. (ed.): Bryophyte Ecology. Dordrecht, Springer, 229- 289. ISBN: 978-94-009-5891-3 Go to original source...
  14. Couwenberg J., Dommain R., Joosten H. (2010): Greenhouse gas fluxes from tropical peatlands in south-east Asia. Global Change Biology, 16: 1715-1732. Go to original source...
  15. Cui Q., Song C., Wang X., Shi F., Yu X., Tan W. (2018): Effects of warming on N2O fluxes in a boreal peatland of permafrost region, Northeast China. Science of the Total Environment, 616: 427-434. Go to original source... Go to PubMed...
  16. Dinsmore K.J., Skiba U.M., Billett M.F., Rees R.M. (2009): Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant and Soil, 318: 229-242. Go to original source...
  17. Eickenscheidt T., Heinichen J., Augustin J., Freibauer A., Droesler M. (2014): Nitrogen mineralization and gaseous nitrogen losses from waterlogged and drained organic soils in a black alder (Alnus glutinosa (L.) Gaertn.) forest. Biogeosciences, 11: 2961-2976. Go to original source...
  18. Frasier R., Ullah S., Moore T.R. (2010): Nitrous oxide consumption potentials of well-drained forest soils in Southern Quebec, Canada. Geomicrobiology Journal, 27: 53-60. Go to original source...
  19. Frolking S., Talbot J., Jones M.C., Treat C.C., Kauffman J.B., Tuittila E.-S., Roulet N. (2011): Peatlands in the Earth's 21st century climate system. Environmental Reviews, 19: 371-396. Go to original source...
  20. Gong Y., Wu J. (2021): Vegetation composition modulates the interaction of climate warming and elevated nitrogen deposition on nitrous oxide flux in a boreal peatland. Global Change Biology, 27: 5588-5598. Go to original source... Go to PubMed...
  21. Gong Y., Wu J., Vogt J., Le T.B. (2019): Warming reduces the increase in N2O emission under nitrogen fertilization in a boreal peatland. Science of the Total Environment, 664: 72-78. Go to original source... Go to PubMed...
  22. Gong Y., Wu J., Vogt J., Ma W. (2020): Greenhouse gas emissions from peatlands under manipulated warming, nitrogen addition, and vegetation composition change: a review and data synthesis. Environmental Reviews, 28: 428-437. Go to original source...
  23. Gong Y., Wu J.H., Vogt J., Le T.B., Yuan T. (2018): Combination of warming and vegetation composition change strengthens the environmental controls on N2O fluxes in a boreal peatland. Atmosphere, 9: 480. Go to original source...
  24. Gorham E. (1991): Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1: 182-195. Go to original source... Go to PubMed...
  25. Hall B.D., Dutton G.S., Elkins J.W. (2007): The NOAA nitrous oxide standard scale for atmospheric observations. Journal of Geophysical Research-Atmospheres, 112: D09305. Go to original source...
  26. Hatano R. (2019): Impact of land use change on greenhouse gases emissions in peatland: a review. International Agrophysics, 33: 167-173. Go to original source...
  27. Hu J., Inglett K.S., Wright A.L., Reddy K.R. (2016): Nitrous oxide production and reduction in seasonally-flooded cultivated peatland soils. Soil Science Society of America Journal, 80: 783-793. Go to original source...
  28. Kachenchart B., Jones D.L., Gajaseni N., Edwards-Jones G., Limsakul A. (2012): Seasonal nitrous oxide emissions from different land uses and their controlling factors in a tropical riparian ecosystem. Agriculture, Ecosystems and Environment, 158: 15-30. Go to original source...
  29. Lamers L.P.M., Bobbink R., Roelofs J.G.M. (2000): Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6: 583-586. Go to original source...
  30. Larmola T., Bubier J.L., Kobyljanec C., Basiliko N., Juutinen S., Humphreys E., Preston M., Moore T.R. (2013): Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology, 19: 3729-3739. Go to original source... Go to PubMed...
  31. Le T.B., Wu J., Gong Y., Vogt J. (2021): Graminoid removal reduces the increase in N2O fluxes due to nitrogen fertilization in a boreal peatland. Ecosystems, 24: 261-271. Go to original source...
  32. Leeson S.R., Levy P.E., van Dijk N., Drewer J., Robinson S., Jones M.R., Kentisbeer J., Washbourne I., Sutton M.A., Sheppard L.J. (2017): Nitrous oxide emissions from a peatbog after 13 years of experimental nitrogen deposition. Biogeosciences, 14: 5753-5764. Go to original source...
  33. Leppelt T., Dechow R., Gebbert S., Freibauer A., Lohila A., Augustin J., Droesler M., Fiedler S., Glatzel S., Hoeper H., Jaerveoja J., Laerke P.E., Maljanen M., Mander U., Maekiranta P., Minkkinen K., Ojanen P., Regina K., Stromgren M. (2014): Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe. Biogeosciences, 11: 6595-6612. Go to original source...
  34. Li T., Bu Z.J., Liu W.Y., Zhang M.Y., Peng C.H., Zhu Q.A., Shi S.W., Wang M. (2019): Weakening of the "enzymatic latch" mechanism following long-term fertilization in a minerotrophic peatland. Soil Biology and Biochemistry, 136: 107528. Go to original source...
  35. Liimatainen M., Martikainen P.J., Maljanen M.J.S.B. (2014): Why granulated wood ash decreases N2O production in boreal acidic peat soil? Soil Biology and Biochemistry, 79: 140-148. Go to original source...
  36. Liimatainen M., Voigt C., Martikainen P.J., Hytonen J., Regina K., Oskarsson H., Maljanen M. (2018): Factors controlling nitrous oxide emissions from managed northern peat soils with low carbon to nitrogen ratio. Soil Biology and Biochemistry, 122: 186-195. Go to original source...
  37. Limpens J., Heijmans M., Berendse F. (2006): The nitrogen cycle in boreal peatlands. In: Wieder R.K., Vitt D.H. (eds.): Boreal Peatland Ecosystem. Berlin, Springer, 195-230. ISBN: 978-3-54031913-9 Go to original source...
  38. Liu C., Bu Z., Ma J., Yuan M., Feng L., Liu S. (2015): Comparative study on the response of deciduous and evergreen shrubs to nitrogen and phosphorus input in Hani Peatland of Changbai Mountains. Chinese Journal of Ecology, 34: 2711-2719.
  39. Lund M., Christensen T.R., Mastepanov M., Lindroth A., Strom L. (2009): Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates. Biogeosciences, 6: 2135-2144. Go to original source...
  40. Malhi S.S., McGill W.B., Nyborg M. (1990): Nitrate losses in soils: effect of temperature, moisture and substrate concentration. Soil Biology and Biochemistry, 22: 733-737. Go to original source...
  41. Maljanen M., Liimatainen M., Hytonen J., Martikainen P.J. (2014): The effect of granulated wood-ash fertilization on soil properties and greenhouse gas (GHG) emissions in boreal peatland forests. Boreal Environment Research, 19: 295-309.
  42. Maljanen M., Sigurdsson B.D., Guomundsson J., Oskarsson H., Huttunen J.T., Martikainen P.J. (2010): Greenhouse gas balances of managed peatlands in the Nordic countries - present knowledge and gaps. Biogeosciences, 7: 2711-2738. Go to original source...
  43. Martikainen P.J., Nykänen H., Crill P., Silvola J. (1993): Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature, 366: 51-53. Go to original source...
  44. Minkkinen K., Ojanen P., Koskinen M., Penttilä T. (2020): Nitrous oxide emissions of undrained, forestry-drained, and rewetted boreal peatlands. Forest Ecology and Management, 478: 118494. Go to original source...
  45. Moore T.R., Knorr K.-H., Thompson L., Roy C., Bubier J.L. (2019): The effect of long-term fertilization on peat in an ombrotrophic bog. Geoderma, 343: 176-186. Go to original source...
  46. Nykänen H., Vasander H., Huttunen J.T., Martikainen P.J. (2002): Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland. Plant and Soil, 242: 147-155. Go to original source...
  47. Oktarita S., Hergoualc'h K., Anwar S., Verchot L.V. (2017): Substantial N2O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environmental Research Letters, 12: 104007. Go to original source...
  48. Ravishankara A.R., Daniel J.S., Portmann R.W. (2009): Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326: 123-125. Go to original source... Go to PubMed...
  49. Regina K., Nykänen H., Silvola J., Martikainen P.J. (1996): Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry, 35: 401-418. Go to original source...
  50. Regina K., Silvola J., Martikainen P.J. (2010): Short-term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands. Global Change Biology, 5: 183-189. Go to original source...
  51. Rückauf U., Augustin J., Russow R., Merbach W. (2004): Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake. Soil Biology and Biochemistry, 36: 77-90. Go to original source...
  52. Rudolph H., Voigt J.U. (2010): Effects of NH4+-N and NO3+-N on growth and metabolism of Sphagnum magellanicum. Physiologia Plantarum, 66: 339-343. Go to original source...
  53. Sosulski T., Stêpieñ W., W±s A., Szymañska M. (2020): N2O and CO2 emissions from bare soil: effect of fertilizer management. Agriculture, 10: 602. Go to original source...
  54. Tedeschi A., De Marco A., Polimeno F., Di Tommasi P., Maglione G., Ottaiano L., Arena C., Magliulo V., Vitale L. (2021): Effects of the fertilizer added with DMPP on soil nitrous oxide emissions and microbial functional diversity. Agriculture, 11: 12. Go to original source...
  55. Teepe R., Brumme R., Beese F. (2001): Nitrous oxide emissions from soil during freezing and thawing periods. Soil Biology and Biochemistry, 33: 1269-1275. Go to original source...
  56. Updegraff K., Pastor J., Bridgham S.D., Johnston C.A. (1995): Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecological Applications, 5: 151-163. Go to original source...
  57. Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W., Schlesinger W.H., Tilman D. (1997): Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7: 737-750. Go to original source...
  58. Vitt D.H., Wieder K., Halsey L.A., Turetsky M. (2003): Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatlands in Alberta, Canada. Bryologist, 106: 235-245. Go to original source...
  59. Voigt C., Lamprecht R.E., Marushchak M.E., Lind S.E., Novakovskiy A., Aurela M., Martikainen P.J., Biasi C. (2017): Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide. Global Change Biology, 23: 3121-3138. Go to original source... Go to PubMed...
  60. Wassen M.J., Veterink H., Deswart E. (1995): Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. Journal of Vegetation Science, 6: 5-16. Go to original source...
  61. Wieder R.K., Vitt D.H., Vile M.A., Graham J.A., Hartsock J.A., Popma J.M.A., Fillingim H., House M., Quinn J.C., Scott K.D., Petix M., McMillen K.J. (2020): Experimental nitrogen addition alters structure and function of a boreal poor fen: implications for critical loads. Science of the Total Environment, 733: 138619. Go to original source... Go to PubMed...
  62. Woodin S.J., Lee J.A. (1987): The fate of some components of acidic deposition in ombrotrophic mires. Environmental Pollution, 45: 61-72. Go to original source... Go to PubMed...
  63. Yu J., Liu J., Sun Z., Sun W., Wang J., Wang G., Chen X. (2010): The fluxes and controlling factors of N2O and CH4 emissions from freshwater marsh in Northeast China. Science China-Earth Sciences, 53: 700-709. Go to original source...
  64. Zhang M., Bu Z., Jiang M., Wang S., Liu S., Chen X., Hao J., Liao W. (2019): The development of Hani peatland in the Changbai mountains (NE China) and its response to the variations of the East Asian summer monsoon. Science of the Total Environment, 692: 818-832. Go to original source... Go to PubMed...
  65. Zhou W., Guo Y., Zhu B., Wang X., Zhou L., Yu D., Dai L. (2015): Seasonal variations of nitrogen flux and composition in a wet deposition forest ecosystem on Changbai Mountain. Acta Ecologica Sinica, 35: 158-164. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.