Plant Soil Environ., 2022, 68(5):245-252 | DOI: 10.17221/53/2022-PSE
Afforestation affects vertical distribution of basic soil characteristics and taxonomic status of sodic soilsOriginal Paper
- Department for Landscape Protection and Environmental Geography, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
Afforestation, settled before 60-90 years and adjacent solonetzic grasslands, representing the natural vegetation cover were compared in this study based on their basic soil characteristics (pH, CaCO3 content, soil organic carbon (SOC), and exchangeable sodium percentage (ESP)) up to 2 m depth. The assumption was that the plantings of arbour vegetation can change soil characteristics of sodic soils not only in superficial layers but even in larger depths. Grasslands and forest soils were compared by standardised depths. Afforested soils showed lower pH in the depth at 0-100 cm, and slightly higher SOC content in subsoil (20-100 cm). CaCO3 content was significantly different (higher) only at the depth of 50-100 cm in afforested soils. Remarkable differences in ESP values were measured. Afforestation had in almost every layer (0-20, 20-50, 50-100 and 150-200 cm) a significant lower ESP value than grassland soil samples from the same depths. As the value of the ESP is relevant from soil classification purposes as well, the leaching of sodium also can change the taxonomic status of the soils from soils with natric horizon, to soils with Sodic or Bathysodic qualifiers.
Keywords: salt-affected soils; land cover change; desodification; sodicity; soil carbon sequestration
Published: May 15, 2022 Show citation
References
- Balog K., Gribovszki Z., Szabó A., Jobbágy E., Nosetto M., Kuti L., Pásztor L., Tóth T. (2014): Effect of forest plantations on subsurface salt accumulation in lowlands with shallow groundwater. Agrokémia és Talajtan, 63: 249-268.
Go to original source...
- Bhojvaid P.P., Timmer V.R. (1998): Soil dynamics in an age sequence of Prosopis juliflora planted for sodic soil restoration in India. Forest Ecology and Management, 106: 181-193.
Go to original source...
- Bleam W. (2017): Acid-base chemistry. In: Blaem W. (ed.): Soil and Environmental Chemistry. 2nd Edition. Cambridge, Academic Press, 253-331. ISBN: 9780128041956
Go to original source...
- Buzás I. (ed.) (1988): Methods Textbook to Agrochemistry and Soil Science 2. Budapest, Mezőgazdasági Kiadó, 243. (In Hungarian)
- Chaney R.C., Slonim S.M., Slonim S.S. (1982): Determination of calcium carbonate content in soils. In: Chaney R.C., Demars K.R. (eds.): Geotechnical Properties, Behavior, and Performance of Calcareous Soils. Baltimore, American Society for Testing and Materials, 3-16.
Go to original source...
- Craine J.M., Wedin D.A., Chapin F.S., Reich P.B. (2002): Relationship between the structure of root systems and resource use for 11 North American grassland plants. Plant Ecology, 165: 85-100.
Go to original source...
- Fiedler F.R.P.E., Frasier G.W., Ramirez J.A., Ahuja L.R. (2002): Hydrologic response of grasslands: effects of grazing, interactive infiltration, and scale. Journal of Hydrologic Engineering, 7: 293-301.
Go to original source...
- Gribovszki Z., Kalicz P., Balog K., Szabó A., Tóth T., Csáfordi P., Metwaly M., Szalai S. (2017): Groundwater uptake of different surface cover and its consequences in great Hungarian plain. Ecological Processes, 6: 39.
Go to original source...
- Holubík O., Podrázský V., Vopravil J., Khel T., Remeš J. (2014): Effect of agricultural lands afforestation and tree species composition on the soil reaction, total organic carbon and nitrogen content in the uppermost mineral soil profile. Soil and Water Research, 9: 192-200.
Go to original source...
- IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014 (update 2015). International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Report No. 106. Rome, Food and Agriculture Organisation of the United Nations.
- Jahn R., Blume H.P., Asio V.B., Spaargaren O., Schad P. (2006): Guidelines for Soil Description. Rome, Food and Agriculture Organisation of the United Nations, 97.
- Jobbágy E., Jackson R.B. (2007): Groundwater and soil chemical changes under phreatophytic tree plantations. Journal of Geophyisical Research, 112: 1-15.
Go to original source...
- Mahdy A.M. (2011): Comparative effects of different soil amendments on amelioration of saline-sodic soils. Soil and Water Research, 6: 205-216.
Go to original source...
- Mishra A., Sharma S.D., Khan G.H. (2003): Improvement in physical and chemical properties of sodic soil by 3, 6 and 9 years old plantation of Eucalyptus tereticornis: biorejuvenation of sodic soil. Forest Ecology and Management, 184: 115-124.
Go to original source...
- Mishra A., Sharma S.D. (2010): Influence of forest tree species on reclamation of semiarid sodic soils. Soil Use and Management, 26: 445-454.
Go to original source...
- Mujica C.R., Bea S.A. (2020): Estimations of rooting depths and sources of plant-available water (PAW) in flatland petrocalcic soils under different land uses. Geoderma, 361: 114019.
Go to original source...
- Nippert J.B., Holdo R.M. (2015): Challenging the maximum rooting depth paradigm in grasslands and savannas. Functional Ecology, 29: 739-745.
Go to original source...
- Nosetto M.D., Jobbágy E.G., Tóth T., Di Bella C.M. (2007): The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands. Oecologia, 152: 695-705.
Go to original source...
Go to PubMed...
- Novák T.J., Tóth Cs.A. (2016): Development of erosional microforms and soils on semi-natural and anthropogenic influenced solonetzic grasslands. Geomorphology, 254: 121-129.
Go to original source...
- Novák T., Balla D., Rásó J., Botos Á., Mester T. (2017): Taxonomic position of the soils of the NAIK ERTI Experimental Station of Püspökladány according the WRB 2015. Budapest, Hungarian Soil Science Society, 189-197. (In Hungarian)
- Pásztor L., Laborczi A., Bakacsi Z., Szabó J., Illés G. (2018): Compilation of a national soil-type map for Hungary by sequential classification methods. Geoderma, 311: 93-108.
Go to original source...
- Ponomareva V.V., Plotnikova T.A. (1980): Humus and Pedogenesis. Leningrad, Nauka, 65-74. (In Russian)
- Singh K., Pandey V.C., Singh B., Singh R.R. (2012): Ecological restoration of degraded sodic lands through afforestation and cropping. Ecological Engineering, 43: 70-80.
Go to original source...
- Szabolcs I., Várallyay Gy., Mélyvölgyi J. (1978): The soils and landscape ecology of Újszentmargita. Agrokémia és Talajtan, 27: 1-30. (In Hungarian)
- Szöőr Gy., Balázs É., Novák T., Kovács-Pálffy P., Kónya P. (2008): Mineralogical composition of genetic horizons of crusty meadow solonetz soil profile from Püspökladány based on X-ray diffraction and thermal analysis. Acta Geographica ac Geologica et Meteorologica Debrecina: Geology Geomorphology Physical Geography Series, 3: 9-14.
- Tóth B. (ed.) (1972): Afforestation on Salt Affected Soils. Budapest, Akadémiai Kiadó, 266. (In Hungarian)
- Tóth T., Balog K., Szabó A., Pásztor L., Jobbágy E.G., Nosetto M.D., Gribovszki Z. (2014): Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas. AoB Plants, 6: plu054.
Go to original source...
- Vopravil J., Formánek P., Janků J., Holubík O., Khel T. (2021): Early changes in soil organic carbon following afforestation of former agricultural land. Soil and Water Research, 16: 228-236.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.