Plant Soil Environ., 2023, 69(11):487-499 | DOI: 10.17221/330/2023-PSE

Effects of exogenous ascorbic acid on photosynthesis and xanthophyll cycle in alfalfa (Medicago sativa L.) under drought and heat stressOriginal Paper

Yaqian Zong1, Chao Xu2, Kai Zhou1, Xinhui Duan1, Bo Han1, Chenggang He1, Hua Jiang1
1 Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, P.R. China
2 Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, P.R. China

Alfalfa is an important leguminous plant, yield and quality depend on the growing environment, while effects of drought and heat stress on alfalfa leaves are unknown. This study was conducted to evaluate the effect of exogenous ascorbic acid (AsA) on photosynthesis, chlorophyll fluorescence, and xanthophyll cycle in alfalfa leaves subject to under drought and heat stress. The results suggest that drought and heat stress caused decreases in the net photosynthetic rate (Pn) in alfalfa leaves, but stomatal conductance (gs), transpiration rate (Tr), and intercellular CO2 concentration (ci) were increased. The application of AsA could alleviate these changes to some extent. Besides, the decreased photosystem II (PSII) maximum photochemical efficiency (Fv/Fm) and violaxanthin (V) contents and significantly increased non-photochemical quenching (NPQ) levels. The increased NPQ corresponds to the de-epoxidation state (DPS) of xanthophyll pigments. In the AsA-pretreated alfalfa plants, the Fv/Fm and the NPQ were elevated, indicating that AsA could alleviate the adverse effects on photosynthesis induced by this stress. The violaxanthin de-epoxidase (VDE) enzyme activity was inhibited by drought and heat stress, and AsA significantly increased VDE enzymatic activity on the 2nd and 8th days. In summary, photoinhibition of PSII occurred in alfalfa leaves under drought and heat stress, resulting in decreased photosynthetic activity. Exogenous AsA can enhance the photosynthetic capacity of the plant, and enhance the drought and heat resistance of alfalfa.

Keywords: exogenous substances; abiotic stress; leaf gas exchange; climate change

Received: August 11, 2023; Revised: October 19, 2023; Accepted: October 23, 2023; Prepublished online: October 31, 2023; Published: November 30, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zong Y, Xu C, Zhou K, Duan X, Han B, He C, Jiang H. Effects of exogenous ascorbic acid on photosynthesis and xanthophyll cycle in alfalfa (Medicago sativa L.) under drought and heat stress. Plant Soil Environ. 2023;69(11):487-499. doi: 10.17221/330/2023-PSE.
Download citation

References

  1. Alayafi A.A.M. (2020): Exogenous ascorbic acid induces systemic heat stress tolerance in tomato seedlings: transcriptional regulation mechanism. Environmental Science and Pollution Research, 27: 19186-19199. Go to original source... Go to PubMed...
  2. Alonso R., Elvira S., Castillo F.J., Gimeno B.S. (2001): Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant, Cell and Environment, 24: 905-916. Go to original source...
  3. Anaya F., Fghire R., Lamnai K., Loutfi K., Wahbi S., Carvalho I.S. (2022): Effect of exogenous salicylic acid on growth parameters, gas exchange, and photosynthetic yields in salt-stressed Vicia faba L., plants. Russian Journal of Plant Physiology, 69: 149. Go to original source...
  4. Bernardo S., Rodrigo M.J., Vives-Peris V., Gómez-Cadenas A., Zacarías L., Machado N., Moutinho-Pereira J., Dinis L.-T. (2022): Fine-tuning of grapevine xanthophyll-cycle and energy dissipation under Mediterranean conditions by kaolin particle-film. Scientia Horticulturae, 291: 110584. Go to original source...
  5. Bi Y., Che W., Gu L. (2007): Polymorphic characteristics and origin analysis of wild alfalfa population (Medicago sativa L.) in Deqin area. Acta Agrestia Sinica, 4: 306-311.
  6. Chen X.J., Han H.W., Cong Y.D., Li X.Z., Zhang W.B., Wan W.L., (2023): The protective effect of exogenous ascorbic acid on photosystem inhibi-tion of tomato seedlings induced by salt stress. Plants, 12: 1379. Go to original source... Go to PubMed...
  7. Chen X.J., Zhou Y., Cong Y.D., Zhu P., Xing J.Y., Cui J.X., Cui J.X., Xu W., Diao M., Liu H.Y. (2021): Ascorbic acid-induced photosynthetic adapt-ability of processing tomatoes to salt stress probed by fast OJIP fluorescence rise. Frontiers in Plant Science, 12: 594400. Go to original source... Go to PubMed...
  8. D±browski P., Baczewska A.H., Pawlu¶kiewicz B., Paunov M., Alexandrov V., Goltsev V., Kalaji M.H. (2016): Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. Journal of Photochemistry and Photobiology B: Biology, 157: 22-31. Go to original source... Go to PubMed...
  9. Darapuneni M.K., Lauriault L.M., Vanleeuwen D.M., Angadi S.V. (2020): Influence of irrigation regimes on alfalfa dry matter yield and water productivity in a semiarid subtropical environment. Irrigation and Drainage, 69: 1063-1071. Go to original source...
  10. Elkelish A., Qari S.H., Mazrou Y.S.A., Abdelaal K.A.A., Hafez Y.M., Abu-Elsaoud A.M., El-Saber Batiha G., El-Esawi M.A., Nahhas N.E. (2020): Exogenous ascorbic acid induced chilling tolerance in tomato plants through modulating metabolism, osmolytes, antioxidants, and transcriptional regulation of catalase and heat shock pro-teins. Plants, 9: 431. Go to original source... Go to PubMed...
  11. Eskling M., Arvidsson P.O., Åkerlund H.E. (1997): The xanthophyll cycle, its regulation and components. Physiologia Plantarum, 100: 806-816. Go to original source...
  12. Elsiddig A.M.I., Zhou G.S., Nimir N.E.A., Ali A.Y.A. (2022): Effect of exogenous ascorbic acid on two sorghum varieties under different types of salt stress. Chilean Journal of Agricultural Research, 82: 10-20. Go to original source...
  13. Fahad S., Bajwa A.A., Nazir U., Anjum S.A., Farooq A., Zohaib A., Sadia S., Nasim W., Adkins S., Saud S., Ihsan M.Z., Alharby H., Wu C., Wang D.P., Huang J.L. (2017): Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 29: 1147. Go to original source... Go to PubMed...
  14. Galicia-Campos E., García-Villaraco Velasco A., Montero-Palmero M.B., Gutiérrez-Mañero F.J., Ramos-Solano B. (2022): Modulation of photo-synthesis and ROS scavenging response by beneficial bacteria in Olea europaea plantlets under salt stress conditions. Plants, 11: 2748. Go to original source... Go to PubMed...
  15. Han H., Gao S., Li B., Dong X.C., Feng H.L., Meng Q.W. (2010): Overexpression of violaxanthin de-epoxidase gene alleviates photoinhibition of PSII and PSI in tomato during high light and chilling stress. Journal of Plant Physiology, 167: 176-183. Go to original source... Go to PubMed...
  16. Hejnák V., Tatar Ö., Atasoy G.D., Martinková J., Çelen A.E., Hnilička F., Skalický M. (2015): Growth and photosynthesis of upland and pima cotton: response to drought and heat stress. Plant, Soil and Environment, 61: 507-514. Go to original source...
  17. Jalili I., Ebadi A., Askari M.A., Kalateh Jari S., Aazami M.A. (2023): Foliar application of putrescine, salicylic acid, and ascorbic acid mitigates frost stress damage in Vitis vinifera cv. Giziluzum. BMC Plant Biology, 23: 1-15. Go to original source... Go to PubMed...
  18. Krall J.P., Edwards G.E. (1992): Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum, 86: 180-187. Go to original source...
  19. Li K., Chen Y., Huang C. (2000): The impacts of drought in China: recent experiences. Drought: A Global Assessment, 331-347.
  20. Li L.J., Gu W.R., Li J., Li C.F., Xie T.L., Qu D.Y., Meng Y., Li C.F., Wei S. (2018): Exogenously applied spermidine alleviates photosynthetic inhibi-tion under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. Plant Physi-ology and Biochemistry, 129: 35-55. Go to original source... Go to PubMed...
  21. Liu L.B., Bao A.K., Li H.J., Bai W.P., Liu H.S., Tian Y., Zhao Y.Y., Xia F.C., Wang S.M. (2023): Overexpression of ZxABCG11 from Zygophyllum xanthoxylum enhances tolerance to drought and heat in alfalfa by increasing cuticular wax deposition. The Crop Journal, 11: 1140-1151. Go to original source...
  22. Liu B., Liang J., Tang G., Wang X., Liu F., Zhao D. (2019): Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks. Scientia Horticulturae, 250: 230-235. Go to original source...
  23. Liu D., Wu L.T., Naeem M.S., Liu H.B., Deng X.Q., Xu L., Zhang F., Zhou W.J. (2013): 5-Aminolevulinic acid enhances photosynthetic gas ex-change, chlorophyll fluorescence and antioxidant system in oilseed rape under drought stress. Acta Physiologiae Plantarum, 35: 2747-2759. Go to original source...
  24. Liu W.J., Yuan S., Zhang N.H., Lei T., Duan H.G., Liang H.G., Lin H.H. (2006): Effect of water stress on photosystem 2 in two wheat cultivars. Biologia Plantarum, 50: 597-602. Go to original source...
  25. Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods, 25: 402-408. Go to original source...
  26. Mattila H., Tyystjärvi E. (2022): Light-induced damage to photosystem II at a very low temperature (195 K) depends on singlet oxygen. Physiologia Plantarum, 174: e13824. Go to original source... Go to PubMed...
  27. Misra A.N., Latowski D., Strzalka K. (2006): The xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stress. Russian Journal of Plant Physiology, 53: 102-109. Go to original source...
  28. Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I. (2007): Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767: 414-421. Go to original source... Go to PubMed...
  29. Nawrocki W.J., Liu X., Raber B., Hu C., De Vitry C., Bennett D.I., Bennett D.I.G., Croce R. (2021): Molecular origins of induction and loss of photoinhibition-related energy dissipation qI. Science Advances, 7: eabj0055. Go to original source...
  30. North H.M., Frey A., Boutin J.P., Sotta B., Marion-Poll A. (2005): Analysis of xanthophyll cycle gene expression during the adaptation of Arabidop-sis to excess light and drought stress: changes in RNA steady-state levels do not contribute to short-term responses. Plant Science, 169: 115-124. Go to original source...
  31. Qiu N., Lu Q., Lu C. (2003): Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex central-asiatica. New Phytologist, 159: 479-486. Go to original source... Go to PubMed...
  32. Ruban A.V., Berera R., Ilioaia C., van Stokkum I.H.M., Kennis J.T.M., Pascal A.A., van Amerongen H., Robert B., Horton P., van Grondelle R. (2007): Grondelle, identification of a mechanism of photoprotective energy dissipation in higher plants. Nature, 450: 575-578. Go to original source... Go to PubMed...
  33. Sharma D.K., Andersen S.B., Ottosen C.O., Rosenqvist E. (2015): Wheat cultivars selected for high Fv/Fm under heat stress maintain high photo-synthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum, 153: 284-298. Go to original source... Go to PubMed...
  34. Sharma R., Bhardwaj R., Thukral A.K., Al-Huqail A.A., Siddiqui M.H., Ahmad P. (2019): Oxidative stress mitigation and initiation of antioxidant and osmoprotectant responses mediated by ascorbic acid in Brassica juncea L. subjected to copper (II) stress. Ecotoxicology and Environmental Safety, 182: 109436. Go to original source... Go to PubMed...
  35. Shin Y.K., Bhandari S.R., Jo J.S., Song J.W., Lee J.G. (2021): Effect of drought stress on chlorophyll fluorescence parameters, phytochemical con-tents, and antioxidant activities in lettuce seedlings. Horticulturae, 7: 238. Go to original source...
  36. Smirnoff N. (1996): Botanical briefing: the function and metabolism of ascorbic acid in plants. Annals of Botany, 78: 661-669. Go to original source...
  37. Song L., Yue L., Zhao H., Hou M. (2013): Protection effect of nitric oxide on photosynthesis in rice under heat stress. Acta Physiologiae Plantarum, 35: 3323-3333. Go to original source...
  38. Song X., Zhou G., He Q. (2021): Critical leaf water content for maize photosynthesis under drought stress and its response to rewatering. Sustain-ability, 13: 7218. Go to original source...
  39. Song X., Zhou G., He Q., Zhou H. (2020): Stomatal limitations to photosynthesis and their critical water conditions in different growth stages of maize under water stress. Agricultural Water Management, 241: 106330. Go to original source...
  40. Stasik O., Jones H.G. (2007): Response of photosynthetic apparatus to moderate high temperature in contrasting wheat cultivars at different oxygen concentrations. Journal of Experimental Botany, 58: 2133-2143. Go to original source... Go to PubMed...
  41. Tang T., Zheng G.W., Li W.Q. (2012): Defense mechanisms of plants photosystem to heat stress. Chinese Journal of Biochemistry and Molecular Biology, 28: 127-132.
  42. Teng L., Liu H., Chu X., Song X., Shi L. (2022): Effect of precipitation change on the photosynthetic performance of Phragmites australis under elevated temperature conditions. PeerJ, 10: e13087. Go to original source... Go to PubMed...
  43. Tzortzakis N., Chrysargyris A., Aziz A. (2020): Adaptive response of a native Mediterranean grapevine cultivar upon short-term exposure to drought and heat stress in the context of climate change. Agronomy, 10: 249. Go to original source...
  44. Van Kooten O., Snel J.F.H. (1990): The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25: 147-150. Go to original source... Go to PubMed...
  45. Vinocur B., Altman A. (2005): Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16: 123-132. Go to original source... Go to PubMed...
  46. Xu C., He C.G., Wang Y.J., Bi Y.F., Jiang H. (2020): Effect of drought and heat stresses on photosynthesis, pigments, and xanthophyll cycle in alfalfa (Medicago sativa L.). Photosynthetica, 58: 1226-1236. Go to original source...
  47. Xu C.C., Lin R.C., Li L.B., Kuang T.Y. (2000): Increase in resistance to low temperature photoinhibition following ascorbate feeding is attributable to an enhanced xanthophyll cycle activity in rice (Oryza sativa L.) leaves. Photosynthetica, 38: 221-226. Go to original source...
  48. Yamamoto H.Y., Higashi R.M. (1978): Violaxanthin de-epoxidase lipid composition and substrate specificity. Archives of Biochemistry and Bio-physics, 190: 514-522. Go to original source... Go to PubMed...
  49. Yang S., Meng D.Y., Hou L.L., Li Y., Guo F., Meng J.J., Wan S.B., Li X.G. (2015): Peanut violaxanthin de-epoxidase alleviates the sensitivity of PSII photoinhibition to heat and high irradiance stress in transgenic tobacco. Plant Cell Reports, 34: 1417-1428. Go to original source... Go to PubMed...
  50. Yang W., Sun Y., Chen S., Jiang J., Chen F., Fang W., Liu W. (2011): The effect of exogenously applied nitric oxide on photosynthesis and antioxi-dant activity in heat stressed chrysanthemum. Biologia Plantarum, 55: 737-740. Go to original source...
  51. Zhang F., Lu K., Gu Y., Zhang L., Li W., Li Z. (2020): Effects of low-temperature stress and brassinolide application on the photosynthesis and leaf structure of tung tree seedlings. Frontiers in Plant Science, 10: 1767. Go to original source... Go to PubMed...
  52. Zhang Z.D., Yuan L.Q., Ma Y.B., Kang Z., Zhou F., Gao Y., Yang S.C., Li T.L., Hu X.H. (2022): Exogenous 5-aminolevulinic acid alleviates low-temperature damage by modulating the xanthophyll cycle and nutrient uptake in tomato seedlings. Plant Physiology and Biochemistry, 189: 83-93. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.