Plant Soil Environ., 2024, 70(2):72-83 | DOI: 10.17221/311/2023-PSE

Crude oil induces plant growth and antioxidant production in Leersia hexandra Sw.Original Paper

Jose Alberto Orocio-Carrillo ORCID...1, Maria del Carmen Rivera-Cruz ORCID...1, Antonio Juárez-Mandonado ORCID...2, Consuelo del Carmen Bautista-Muñoz ORCID...1, Antonio Trujillo-Narcía ORCID...3, Yolanda García-González ORCID...2, Said Cadena-Villegas ORCID...1
1 Tabasco Campus Postgraduate College, Doctorate in Agricultural Sciences in the Tropics, Cárdenas, Tabasco, México
2 Department of Botany, Antonio Narro Autonomous Agrarian University, Buenavista, Saltillo, Coahuila, México
3 Energy and Environment Academic Body, Popular University of Chontalpa, Cárdenas, Tabasco, México

The potential of Leersia hexandra grass in phytoremediation and natural attenuation of three groups of bacteria in soil contaminated with crude oil was evaluated for 180 days. The quantities of new shoots, root and aerial biomass were evaluated; changes in antioxidant concentrations in leaf and root caused by abiotic stress; population densities of Azotobacter, Azospirillum and Pseudomonas; and microbial respiration. The experimental data showed oil-induced increases of 315% and 196% in new shoots and root phytomass, respectively, and a 44% decrease in leaf + stem phytomass. The enzymatic defence in the grass leaf was manifested by higher concentrations of hydrogen peroxide, phenylalanine ammonium lyase and total flavonoids; the increases fluctuated from 35% to 52%. The response in the root was positive in catalase (16%), and in ammonium phenylalanine lyase, it increased 275% due to the effect of crude oil. The group of indigenous Azotobacter bacteria were tolerant to crude oil exposure, both in the phytoremediation process and in natural attenuation; the population densities varied from 212 to 438 × 103 colony-forming units (CFUs); they are greater than 49% to 106% compared to densities in control soil. Azospirillum spp. and Pseudomonas spp. recorded population abiotic stress. The grass activates enzymatic and plant defence, complementing microbial respiration in response to adaptation to crude oil.

Keywords: adaptation; hydrocarbon stress; phytotoxic effect; resistance; tolerance; root biomass; total phenols

Received: August 1, 2023; Revised: December 13, 2023; Accepted: January 3, 2024; Prepublished online: January 23, 2024; Published: February 12, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Orocio-Carrillo JA, del Carmen Rivera-Cruz M, Juárez-Mandonado A, del Carmen Bautista-Muñoz C, Trujillo-Narcía A, García-González Y, Cadena-Villegas S. Crude oil induces plant growth and antioxidant production in Leersia hexandra Sw. Plant Soil Environ. 2024;70(2):72-83. doi: 10.17221/311/2023-PSE.
Download citation

References

  1. Afzal M., Rehman K., Shabir G., Tahseen R., Ijaz A., Hashmat A.J., Brix H. (2019): Large-scale remediation of oil-contaminated water using float-ing treatment wetlands. Clean Water, 2: 1-10. Go to original source...
  2. Agati G., Azzarello E., Pollastri S., Tattini M. (2012): Flavonoids as plant antioxidants: location and functional significance. Plant Science, 196: 67-76. Go to original source... Go to PubMed...
  3. Agathokleous E., Calabrese E.J. (2020): Environmental toxicology and ecotoxicology: how clean is clean? Rethinking dose-response analysis. Sci-ence of The Total Environment, 746: 138769. Go to original source... Go to PubMed...
  4. Ahmad A., Khan U.W., Shah A.A., Ahmad Y.N., Ali A., Rizwan M., Ali S. (2020): Dopamine alleviates hydrocarbon stress in Brassica oleracea by modulating physio-biochemical attributes and antioxidant defence systems. Chemosphere, 270: 128633. Go to original source... Go to PubMed...
  5. Arias-Trinidad A., Rivera-Cruz M.C., Roldán-Garrigós A., Aceves-Navarro L.A., Quintero-Lizaola R., Hernández-Guzmán J. (2019): Use of Leersia hexandra (Poaceae) in the phytoremediation of soils contaminated with fresh and weathered oil. International Journal of Tropical Biolo-gy, 65: 21-30. Go to original source...
  6. Arvouet-Grand A., Vennat B., Pourrat A., Legret P. (1994): Standardization of propolis extract and identification of principal constituents. Journal de Pharmacie de Belgique, 49: 462-468.
  7. Boruah T., Chakravarty P., Deka H. (2020): Phytosociology and antioxidant profile study for selecting potent herbs for phytoremediation of crude oil-contaminated soils. Environment Monitoring and Assessment, 192: 766. Go to original source... Go to PubMed...
  8. Bouyoucos G.J. (1962): Hydrometer method improved for particle size analyses of soils. Agronomy Journal, 54: 464-465. Go to original source...
  9. Chakravarty P., Deka H. (2021): Enzymatic defence of Cyperus brevifolius in hydrocarbons stress environment and changes in soil properties. Scientific Reports, 11: 718. Go to original source... Go to PubMed...
  10. Chen F., Reddy M.S.S., Temple S., Jackson L., Shadle G., Dixon R.A. (2006): Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). The Plant Journal, 48: 113-124. Go to original source... Go to PubMed...
  11. Chioti V., Zervoudakis G. (2017): Is root catalase a bifunctional catalase-peroxidase? Antioxidants, 6: 39. Go to original source... Go to PubMed...
  12. Cumplido-Nájera C.F., González-Morales S., Ortega-Ortíz H., Cadenas-Pliego G., Benavides-Mendoza A., Juárez-Maldonado A. (2019): The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horti-culturae, 245: 82-89. Go to original source...
  13. Dat J., Vandenabeele S., Vranova E., van Montagu M., Inze D., van Breusegem F. (2000): Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 57: 779-795. Go to original source... Go to PubMed...
  14. Débia P.J.G., Barros B.C.B., Puerari H.H., Ferreira J.C.A., Dias-Arieira C.R. (2021): Induced systemic resistance in beet plants infected with Meloidogyne javanica. Chilean Journal of Agricultural Research, 81: 70-79. Go to original source...
  15. Deng Y., Lu S. (2017): Biosynthesis and regulation of phenylpropanoids in plants. Critical Reviews in Plant Sciences, 36: 257-290. Go to original source...
  16. Devatha C.P., Vishal A.V., Chandra R.P.J. (2019): Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Science, 9: 89. Go to original source...
  17. Dhindsa R.S., Plumb-Dhindsa P., Thorpe T.A. (1981): Leaf senescence: correlated with increased levels of membrane permeability and lipid pe-roxidation, and decrease levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32: 93-101. Go to original source...
  18. Döbereiner J., Marriel I.E., Nery M. (1966): Ecological distribution of Spirillum lipoferum Beijerinck. Canadian Journal of Microbiology, 22: 1464-1473. Go to original source... Go to PubMed...
  19. Docimo T., De Stefano R., Cappetta E., Piccinelli A.L., Celano R., De Palma M., Tucci M. (2020): Physiological, biochemical, and metabolic re-sponses to short and prolonged saline stress in two cultivated cardoon genotypes. Plants, 9: 1-18. Go to original source... Go to PubMed...
  20. Engels C., Kirkby E., White P. (2012): Mineral nutrition, yield and source-sink relationships. In: Marschner P. (ed.): Marschner's Mineral Nutrition of Higher Plants. 3th Edition. San Diego, Academic Press Elsevier, 85-133. ISBN: 978-0-12-384905-2 Go to original source...
  21. Etchevers B.J.D. (1992): Manual of methods for analysis of soils, plants, water and fertilizers. Routine analyzes in fertility studies and programs. Fertility Laboratory, Soil Science Center. Postgraduate College of Agricultural Sciences. Montecillos. Edo, Mexico.
  22. Fan D., Wang S., Guo Y., Liu J., Agathokleous E., Zhu Y., Han J. (2021): The role of bacterial communities in shaping Cd-induced hormesis in "living" soil as a function of land-use change. Journal of Hazardous Materials, 409: 124996. Go to original source... Go to PubMed...
  23. Fessenden R.J., Feseenden J.S. (1983): Organic chemistry. Iberoamerica Publishing Group.. México, 1076.
  24. Fini A., Brunetti C., Di Ferdinando M., Ferrini F., Tattini M. (2011): Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling and Behavior, 6: 709-711. Go to original source... Go to PubMed...
  25. Finger-Teixeira A., Ferrarese L.M.L., Soares A.R., da Silva D., Ferrarese-Filho O. (2010): Cadmium-induced lignification restricts soybean root growth. Ecotoxicology and Environmental Safety, 73: 1959-1964. Go to original source... Go to PubMed...
  26. Foreman J., Demidchik V., Bothwell H.J., Mylona P., Miedema H., Torres M.A., Linstead P., Costa S., Brownlee C., Jones D.J., Davies M.J., Dolan L. (2003): Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422: 442-446. Go to original source... Go to PubMed...
  27. Garrity G.M., Bell J.A., Lilburn T. (2005): Order IX. Pseudomonadales Orla-Jensen 1921, 270AL. In: Brenner D.J., Krieg N.R., Staley J.T. (eds.): Bergey's Manual® of Systematic Bacteriology. 2nd Edition. Boston, Springer, 323-442. Go to original source...
  28. Gill S.S., Tuteja N. (2010): Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909-930. Go to original source... Go to PubMed...
  29. Giorgio M., Trinei M., Migliaccio E., Pelicci P.G. (2007): Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nature Reviews Molecular Cell Biology, 8: 722-728. Go to original source... Go to PubMed...
  30. Glorieux C., Calderón P.B. (2017): Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment ap-proach. Biological Chemistry, 398: 1095-1108. Go to original source... Go to PubMed...
  31. González-Moscoso M., Rivera-Cruz M.C., Trujillo-Narcía A. (2019): Decontamination of soil containing oil by natural attenuation, phytoremedia-tion and chemical desorption. International Journal of Phytoremediation, 21: 768-776. Go to original source... Go to PubMed...
  32. González R.G.A. (1995): Environmental impact of the oil industry in Tabasco state México. Chiapas, Autonomous University of Chiapas. (In Spanish)
  33. Halliwell B. (2006): Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141: 312-322. Go to original source... Go to PubMed...
  34. Hasanuzzaman M., Alam Md.M., Rahman A., Hasanuzzaman Md., Nahar K., Fujita M. (2014): Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Research International, 214: 1-17. Go to original source... Go to PubMed...
  35. Hung C.Y., Yen G.C. (2002): Antioxidant activity of phenolic compounds isolated from Mesona procumbens Hemsl. Journal of Agricultural and Food Chemistry, 50: 2993-2997. Go to original source... Go to PubMed...
  36. Hyodo H., Yang S.F. (1971): Ethylene-enhanced synthesis of phenylalanine ammonia-lyase in pea seedlings. Plant Physiology, 47: 765-770. Go to original source... Go to PubMed...
  37. Janas M.K., Amarowicz R., Zieliñska-Tomaszewska J., Kosiñska A., Posmyk M.M. (2009): Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions. Acta Physiologiae Plantarum, 31: 587-595. Go to original source...
  38. Kalita M., Chakravarty P., Deka H. (2022): Understanding biochemical defense and phytoremediation potential of Leucas aspera in crude oil polluted soil. Environmental Science and Pollution Research, 29: 57579-57590. Go to original source... Go to PubMed...
  39. Kaya C., Okant M., Ugurlar F., Alyemeni M.N., Ashraf M., Ahmad P. (2019): Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere, 225: 627-638. Go to original source... Go to PubMed...
  40. Laloi C., Apel K., Danon A. (2004): Reactive oxygen signaling: the latest news. Current Opinion in Plant Biology, 7: 323-328. Go to original source... Go to PubMed...
  41. Liu H., Weisman D., Tang L., Tan L., Zhang W., Wang Z., Huang Y., Lin W., Liu X., Colón-Carmona A. (2014): Stress signaling in response to polycyclic aromatic hydrocarbon exposure in Arabidopsis thaliana involves a nucleoside diphosphate kinase, NDPK-3. Planta, 241: 95-107. Go to original source... Go to PubMed...
  42. Logeshwaran P., Megharaj M., Chadalavada S., Bowman M., Naidu R. (2018): Petroleum hydrocarbons (PH) in groundwater aquifers: an overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environmental Technology and Innovation, 10: 175-193. Go to original source...
  43. Malicka M., Magurno F., Posta K., Chmura D., Piotrowska-Seget Z. (2021): Differences in the effects of single and mixed species of AMF on the growth and oxidative stress defense in Lolium perenne exposed to hydrocarbons. Ecotoxicology and Environmental Safety, 217: 112252. Go to original source... Go to PubMed...
  44. Matilla J.A. (2008): Seed development and germination. In: Azcón-Bieto J., Talón M. (eds.): Fundamentals of Plant Physiology. Barcelona, McGraw Hill Interamericana, 537-558. ISBN: 9781605357904
  45. Mickelbart M.V., Hasegawa P.M., Bailey-Serres J. (2015): Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16: 237-251. Go to original source... Go to PubMed...
  46. Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. (2004): Reactive oxygen gene network of plants. Trends in Plant Science, 9: 490-498. Go to original source... Go to PubMed...
  47. Neves G.Y.S., Marchiosi R.M., Ferrarese L.L., Siqueira-Soares R.C., Ferrarese-Filho O. (2010): Root growth inhibition and lignification induced by salt stress in soybean. Journal of Agronomy and Crop Science, 196: 467-473. Go to original source...
  48. Noori A., Zare H., Alaie E. (2012): Changes in total phenol and flavonoid contents in Chrysanthemum leucanthemum under crude oil contamina-tion. Journal of Environmental Biology, 6: 3057-3064.
  49. Odukoya J., Lambert R., Sakrabani R. (2019): Understanding the impacts of crude oil and its induced abiotic stresses on agrifood production: a review. Horticulturae, 5: 47. Go to original source...
  50. Olsen S.R., Sommers L.E. (1982): Phosphorus. In: Page A.L., Miller R.H., Keeny D.R. (eds.): Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. 2nd Edition. Madison, 403-430. Go to original source...
  51. Orocio-Carrillo J.A., Rivera-Cruz M.C., Aranda-Ibañez E.M., Trujillo-Narcía A., Hernández-Galvez G., Mendoza-López M.R. (2019): Hormesis under oil-induced stress in Leersia hexandra Sw. used as phytoremediator in clay soils of the Mexican humid tropic. Ecotoxicology, 28: 1063-1074. Go to original source... Go to PubMed...
  52. Page A.L., Miller R.H., Keeney D.R. (1982): Nitrogen total. In: Page A.L., Miller R.H., Keeney D.R. (eds.): Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. 2nd Edition. Madison, 595-629.
  53. Quan L.J., Zhang B., Shi W.W., Li H.Y. (2008): Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology, 50: 2-18. Go to original source... Go to PubMed...
  54. Rivera-Cruz M.C., Trujillo-Narcíar A., Trujillo-Rivera E.A., Arias-Trinidad A., Mendoza-López M.R. (2016): Natural attenuation of weathered oil using aquatic plants in a farm in southeast Mexico. International Journal of Phytoremediation, 18: 877-884. Go to original source... Go to PubMed...
  55. Sachdev S., Ansari S.A., Ansari M.I., Fujita M., Hasanuzzaman M. (2021): Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants, 10: 277. Go to original source... Go to PubMed...
  56. SAS (Statiscal Analysis Systems) (2005): User's Guide. Versión 9.1.3. Cary, SAS Institute, Inc, 664.
  57. Siqueira-Soares R.C., Soares A.R., Parizotto A.V., Ferrarese M.L.L., Ferrarese-Filho O. (2013): Root growth and enzymes related to the lignifica-tion of maize seedlings exposed to the allelochemical L-DOPA. The Scientific World Journal, 2013: 34237. Go to original source... Go to PubMed...
  58. Skrypnik L., Maslennikov P., Novikova A., Kozhikin M. (2021): Effect of crude oil on growth, oxidative stress and response of antioxidative system of two rye (Secale cereale L.) varieties. Plants, 10: 157. Go to original source... Go to PubMed...
  59. Stotzky G. (1965): Microbial respiration. Methods of soil analysis. In: Norman A.G. (ed.): Chemical and Microbiological Properties. Part 2. New York, American Society of Agronomy, 1550-1572. Go to original source...
  60. Syk³owska-Baranek K., Grech-Baran M., Naliwajski M.R. (2015): Paclitaxel production and PAL activity in hairy root cultures of Taxus x media var. Hicksii carrying a taxadiene synthase transgene elicited with nitric oxide and methyl jasmonate. Acta Physiologiae Plantarum, 37: 218. Go to original source...
  61. Treutter D. (2010): Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints. International Journal of Molecular Sciences, 11: 807-857. Go to original source... Go to PubMed...
  62. Ullah R., Hadi F., Ahmad S., Ullah J.A., Rongliang Q. (2019): Phytoremediation of lead and chromium contaminated soil improves with the endog-enous phenolics and proline production in Parthenium, Cannabis, Euphorbia, and Rumex species. Water, Air, and Soil Pollution, 230: 40. Go to original source...
  63. USEPA-3540C (1996): Soxhlet extraction organics. SW-846 test methods for evaluating solid waste physical/chemical methods. Available at: http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/3540c.pdf. Accessed 20 June 2012
  64. Velikova V., Yordanov I., Edreva A. (2000): Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151: 59-66. Go to original source...
  65. Yap C.K., Tan W.S., Wong K.W., Ong G.H., Cheng W.H., Nulit R., Ibrahim M.H., Chew W., Berandah E.F., Okamura H., Al-Mutairi K.A., Al-Shami S.A., Sharifinia M., Mustafa M., Leong W.J., You C.F. (2021): Antioxidant enzyme activities as biomarkers of Cu and Pb stress in Centella asiatica. Stresses, 1: 253-265. Go to original source...
  66. Walkley A., Black I.A. (1934): An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chro-mic acid titration method. Soil Science, 37: 29-38. Go to original source...
  67. Wang M., Garrido-Sanz D., Sansegundo-Lobato P., Redondo-Nieto M., Conlon R., Martin M., Mali R., Liu X., Dowling D.N., Rivilla R., Germaine K.J. (2021): Soil microbiome structure and function in ecopiles used to remediate petroleum-contaminated soil. Frontiers in Environmental Sci-ence, 9: 624070. Go to original source...
  68. Willekens H., Inzé D., van Montagu M., van Camp W. (1995): Catalases in plants. Molecular Breeding, 1: 207-228. Go to original source...
  69. Zuzolo D., Guarino C., Tartaglia M., Sciarrillo R. (2021): Plant-soil-microbiota combination for the removal of total petroleum hydrocarbons (TPH): an in-field experiment. Frontiers in Microbiology, 11: 621581. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.