Plant Soil Environ., 2025, 71(7):453-479 | DOI: 10.17221/137/2025-PSE

An overview and current progress of gibberellic acid-mediated abiotic stress alleviation in plantsReview

Md. Asif Mahamud ORCID...1, Shahin Imran ORCID...2,3, Newton Chandra Paul ORCID...2, Rakibul Hasan Md. Rabbi ORCID...1, Noushin Jahan ORCID...2, Prosenjit Sarker ORCID...4, Md. Najmol Hoque ORCID...5, Mousumi Jahan Sumi ORCID...6, Md. Asaduzzaman7, Shams Ur Rehman ORCID...8, Marian Brestic ORCID...9,10, Viliam Bárek ORCID...11, Milan Skalicky ORCID...12, Akbar Hossain ORCID...13, Mohammad Saidur Rhaman ORCID...13
1 Department of Agricultural Chemistry, Khulna Agricultural University, Khulna, Bangladesh
2 Department of Agronomy, Khulna Agricultural University, Khulna, Bangladesh
3 Institute of Plant Science and Resources, Okayama University, Chuo, Kurashiki, Japan
4 Department of Genetics and Plant Breeding, Khulna Agricultural University, Khulna, Bangladesh
5 Department of Biochemistry and Molecular Biology, Khulna Agricultural University, Khulna, Bangladesh
6 Department of Crop Botany, Khulna Agricultural University, Mymensingh, Bangladesh
7 Allergy Research Centre, Juntendo University, Tokyo, Japan
8 Peking University Institute of Advanced Agricultural Science, Shandong Laboratory of Advanced Agricultural Science at Weifang, Weifang, Shandong, P.R. China
9 Institute of Plant and Environmental Science, Slovak University of Agriculture, Nitra, Slovak Republic
10 College of Life Sciences, Shandong Agricultural University, Taian, P.R. China
11 Institute of Landscape Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture Nitra, Nitra, Slovak Republic
12 Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Prague, Czech Republic
13 Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
14 Department of Seed Science and Technology, Bangladesh Agricultural University, Mymensingh, Bangladesh

Abiotic stressors are the main barriers to successful crop production in this era. The balance of redox and metabolic activities in plants is negatively impacted by abiotic stresses, which ultimately limit the plants’ capacity to grow and develop. The phytohormones are tiny molecules that control how plants grow and develop, as well as how they react to alterations in their environment. Phytohormone, gibberellic acid (GA) has been proven in a number of recent research to increase plants’ ability to withstand abiotic stress. By regulating numerous physio-biochemical and molecular processes, GA plays a crucial part in reducing the perturbations caused by abiotic stresses in plants. Recent findings have shown that GA controls the activity of antioxidant enzymes, stress-responsive genes, photosynthetic machinery, and reduced oxidative damage. Besides, GA has been involved in cross-talk with other phytohormones to regulate abiotic stress in plants. This review summarises the current research on the application of GA and discusses how GA might support crop growth and production in adverse conditions. The interaction of GA with other phytohormones, potential mechanisms for reducing abiotic stress in plants, the disadvantages of employing GA, and its promise for the future are also covered in this review.

Keywords: plant growth regulator; salinity; drought; climate change; chlorophyll content

Received: March 31, 2025; Revised: June 24, 2025; Accepted: June 25, 2025; Prepublished online: July 25, 2025; Published: July 31, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Asif Mahamud M, Imran S, Paul NC, Rabbi RHM, Jahan N, Sarker P, et al.. An overview and current progress of gibberellic acid-mediated abiotic stress alleviation in plants. Plant Soil Environ. 2025;71(7):453-479. doi: 10.17221/137/2025-PSE.
Download citation

References

  1. Abou Seeda M.A., Abou El-Nour E.A.A., Abdallah M.M.S., El-Bassiouny H.M.S., Abd El-Monem A.A. (2022): Impacts of salinity stress on plants and their tolerance strategies: a review. Middle East Journal of Applied Sciences, 12: 282-400.
  2. Achard P., Baghour M., Chapple A., Hedden P., Der Straeten V.D., Genschik P., Moritz T., Harberd N.P. (2007): Plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proceedings of the National Academy of Sciences, 104: 6484-6489. Go to original source... Go to PubMed...
  3. Achard P., Gong F., Cheminant S., Alioua M., Hedden P., Genschik P. (2008a): The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. The Plant Cell, 20: 2117-2129. Go to original source... Go to PubMed...
  4. Achard P., Gusti A., Cheminant S., Alioua M., Dhondt S., Coppens F., Beemster G.T., Genschik P. (2009): Gibberellin signaling controls cell proliferation rate in Arabidopsis. Current Biology, 19: 1188-1193. Go to original source... Go to PubMed...
  5. Achard P., Renou J.P., Berthomé R., Harberd N.P., Genschik P. (2008b): Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Current Biology, 18: 656-660. Go to original source... Go to PubMed...
  6. Achard P., Vriezen W.H., Straeten V.D., Harberd D., Ethylene N.P. (2003): Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. The Plant Cell, 15: 2816-2825. Go to original source... Go to PubMed...
  7. Aftab T., Hakeem R. (2021): Plant Abiotic Stress Physiology: Molecular Advancements. 1st Edition. Boca Raton, Apple Academic Press. ISBN: 9781774630167 Go to original source...
  8. Ahluwalia O., Singh P.C., Bhatia R.A. (2021): A review on drought stress in plants: implications, mitigation and the role of plant growth promoting rhizobacteria. Resources, Environment and Sustainability, 5: 10003. Go to original source...
  9. Ahmad F., Kamal A., Singh A., Ashfaque F., Alamri S., Siddiqui M.H., Khan M.I.R. (2021): Seed priming with gibberellic acid induces high salinity tolerance in pisum Pisum sativum through antioxidants, secondary metabolites and up. Regulation of antiporter genes. Plant Biology, 23: 113-21. Go to original source... Go to PubMed...
  10. Akter S., Samad R. (2024): Effects of kinetin and gibberellic acid on growth and ion transport of rice under cadmium stress. Bangladesh Journal of Botany, 53: 209-216. Go to original source...
  11. Al-Harthi M.M., Bafeel S.O., El-Zohri M. (2021): Gibberellic acid and jasmonic acid improve salt tolerance in summer squash by modulating some physiological parameters symptomatic for oxidative stress and mineral nutrition. Plants, 10: 2768. Go to original source... Go to PubMed...
  12. Ali A.Y.A., Ibrahim M.E.H., Zhou G., Nimir N.E.A., Elsiddig A.M.I., Jiao X., Zhu G., Salih E.G.I., Suliman M.S.E.S., Elradi S.B.M. (2021): Gibberellic acid and nitrogen efficiently protect early seedlings growth stage from salt stress damage in Sorghum. Scientific Reports, 11: 6672. Go to original source... Go to PubMed...
  13. Allevato E., Mauro R.P., Stazi S.R., Marabottini R., Leonardi C., Ierna A., Giuffrida F. (2019): Arsenic accumulation in grafted melon plants: role of rootstock in modulating root-to-shoot translocation and physiological response. Agronomy, 9: 828. Go to original source...
  14. Alonso-Ramírez A., Rodríguez D., Reyes D., Jiménez J.A., Nicolás G., López-Climent M., Gómez-Cadenas A., Nicolás C. (2009): Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology, 150: 1335-1344. Go to original source...
  15. Álvarez-Méndez S.J., Urbano-Gálvez A., Mahouachi J. (2022): Mitigation of salt stress damages in Carica papaya L. seedlings through exogenous pretreatments of gibberellic acid and proline. Chilean Journal of Agricultural Research, 82: 167-176. Go to original source...
  16. An F., Zhang X., Zhu Z., Ji Y., He W., Jiang Z., Guo H. (2012): Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Research, 22: 915-927. Go to original source... Go to PubMed...
  17. Anwar T., Qureshi H., Akhtar M.S., Siddiqi E.H., Fatimah H., Zaman W., Alhammad B.A., Seleiman M.F. (2024a): Enhancing maize growth and resilience to environmental stress with biochar, gibberellic acid and rhizobacteria. Frontiers in Plant Science, 15: 1396594. Go to original source... Go to PubMed...
  18. Anwar T., Qureshi H., Jabeen M., Zaman W., Ali H.M. (2024b): Mitigation of cadmium-induced stress in maize via synergistic application of biochar and gibberellic acid to enhance morpho-physiological and biochemical traits. BMC Plant Biology, 24: 192. Go to original source... Go to PubMed...
  19. Anwar T., Shehzadi A., Qureshi H., Shah M.N., Danish S., Salmen S.H., Ansari M.J. (2023): Alleviation of cadmium and drought stress in wheat by improving growth and chlorophyll contents amended with GA3 enriched deashed biochar. Scientific Reports, 13: 18503. Go to original source... Go to PubMed...
  20. Baghour M., Akodad M., Dariouche A., Maach M., Haddaji H.E., Moumen A., Skalli A., Venema K., Rodríguez-Rosales M.P. (2022): Gibberellic acid and indole acetic acid improves salt tolerance in transgenic tomato plants overexpressing LeNHX4 antiporter. Gesunde Pflanzen, 75: 687-693. Go to original source...
  21. Bajguz A., Piotrowska-Niczyporuk A. (2023): Biosynthetic pathways of hormones in plants. Metabolites, 13: 884. Go to original source... Go to PubMed...
  22. Banerjee A., Roychoudhury A. (2020): Gibberellic acid priming promotes fluoride tolerance in a susceptible Indica rice cultivar by regulating the antioxidant and phytohormone homeostasis. Journal of Plant Growth Regulation, 39: 1476-1487. Go to original source...
  23. Bashir W., Anwar S., Zhao Q., Hussain I., Xie F. (2019): Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. Ecotoxicology and Environmental Safety, 175: 90-101. Go to original source... Go to PubMed...
  24. Bhat K.A., Mahajan R., Pakhtoon M.M., Urwat U., Bashir Z., Shah A.A., Agrawal A., Bhat B., Sofi P.A., Masi A., Zargar S.M. (2022): Low temperature stress tolerance: an insight into the omics approaches for legume crops. Frontiers in Plant Science, 13: 888710. Go to original source... Go to PubMed...
  25. Binenbaum J., Weinstain R., Shani E.G. (2018): Gibberellin localization and transport in plants. Trends in Plant Science, 23: 410-421. Go to original source... Go to PubMed...
  26. Castro-Camba R., Sánchez C., Vidal N., Vielba J.M. (2022): Plant development and crop yield: the role of gibberellins. Plants, 11: 2650. Go to original source... Go to PubMed...
  27. Chen H., Yang R., Zhang X., Chen Y., Xia Y., Xu X. (2021): Foliar application of gibberellin inhibits the cadmium uptake and xylem transport in lettuce (Lactuca sativa L.). Scientia Horticulturae, 228: 110410. Go to original source...
  28. Coelho L.L., Fkiara A., Mackenzie K.K., Müller R., Lütken H. (2018): Exogenous application of gibberellic acid improves flowering in Kalanchoë. HortScience, 53: 342-346. Go to original source...
  29. Cornea-Cipcigan M., Cordea M.I., Mãrgãoan R., Pamfil D. (2022): Exogenously applied GA3 enhances morphological parameters of tolerant and sensitive Cyclamen persicum genotypes under ambient temperature and heat stress conditions. Plants, 11: 1868. Go to original source... Go to PubMed...
  30. Costa A.A., Paiva E.P., Torres S.B., Neta S., Pereira M.L., Leite K.T.O., Sá M.S., Benedito F.V.S., Osmoprotection C.P. (2021): Osmoprotection in Salvia hispanica L. seeds under water stress attenuators. Brazilian Journal of Biology, 82: 233547. Go to original source... Go to PubMed...
  31. Dar T.A., Uddin M., Khan M.M.A., Hakeem K.R., Jaleel H. (2015): Jasmonates counter plant stress: a review. Environmental and Experimental Botany, 115: 49-57. Go to original source...
  32. de Vleesschauwer D., van Buyten E., Satoh K., Balidion J., Mauleon R., Choi I.R., Vera-Cruz C., Kikuchi S., Höfte M. (2012): Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiology, 158: 1833-1846. Go to original source... Go to PubMed...
  33. Devi V., Kaur A., Sethi M., Avinash G. (2023): Perspective chapter: effect of low-temperature stress on plant performance and adaptation to temperature change. In: Hussain S., Hussain A.T., Ahmad W.E., Iqbal A.M. (eds.): Plant Abiotic Stress Responses and Tolerance Mechanisms. London, IntechOpen. Go to original source...
  34. Dinler S.B., Çetinkaya H., Akgün M., Korkmaz K. (2021): Simultaneous treatment of different gibberellic acid doses induces ion accumulation and response mechanisms to salt damage in maize roots. Journal of Plant Biochemistry and Physiology, 9: 258.
  35. Du H., Liu H., Xiong L.E. (2013): Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Frontiers in Plant Science, 4: 397. Go to original source... Go to PubMed...
  36. Farooq M., Wahid A., Zahra N., Hafeez M.B., Siddique K.H.M. (2024): Recent advances in plant drought tolerance. Journal of Plant Growth Regulation, 43: 3337-3369. Go to original source...
  37. Fonouni-Farde C., Kisiala A., Brault M., Emery R.J.N., Diet A., Frugier F. (2017): DELLA1-mediated gibberellin signaling regulates cytokinin-dependent symbiotic nodulation. Plant Physiology, 175: 1795-1806. Go to original source... Go to PubMed...
  38. Fonouni-Farde C., McAdam E., Nichols D., Diet A., Foo E., Frugier F. (2018): Cytokinins and the CRE1 receptor influence endogenous gibberellin levels in Medicago truncatula. Plant Signaling and Behavior, 13: e1428513. Go to original source... Go to PubMed...
  39. Forghani A.H., Almodares A., Ehsanpour A.A. (2018): Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweet sorghum (Sorghum bicolor [L.] Moench cv. Sofra). Applied Biological Chemistry, 61: 113-124. Go to original source...
  40. Gangwar S., Singh V.P., Srivastava P.K., Maurya J.N. (2011): Modification of chromium (VI) phytotoxicity by exogenous gibberellic acid application in Pisum sativum (L.) seedlings. Acta Physiologiae Plantarum, 33: 1385-1397. Go to original source...
  41. Gayatri G.P., Kumar K.G.A., Nair P.S., Pillai M.S. (2021): GA/ABA antagonism in the physiology of seed germination in the recalcitrant and vulnerable tree Vateria indica L. Indian Journal of Agricultural Research, 56: 12-17. Go to original source...
  42. Gnawali A., Subedi R. (2021): Gibberellic acid priming enhances maize seed germination under low water potential. Indonesian Journal of Agricultural Science, 22: 17-26. Go to original source...
  43. Goldani M., Ali D., Mahdi P., Navid V., Zahra R. (2021): Investigation of improving the drought tolerance in Persian petunia (Petunia sp.) by exogenous application of salicylic acid and gibberellic acid. Acta Scientiarum Polonorum Hortorum Cultus, 20: 37-48. Go to original source...
  44. Gong Q., Li Z.H., Wang L., Zhou J.Y., Kang Q., Niu D.D. (2021): Gibberellic acid application on biomass; oxidative stress response; and photosynthesis in spinach (Spinacia oleracea L.) seedlings under copper stress. Environmental Science and Pollution Research, 28: 53594-53604. Go to original source... Go to PubMed...
  45. Gull A., Lone A.A., Wani N.U.I. (2019): Biotic and abiotic stresses in plants. In: de Oliveira A.B. (ed.): Abiotic and Biotic Stress in Plants. London, IntechOpen, 1-19. Go to original source...
  46. Gumi A.M., Rabi'u Bello U. (2024): Role of DNA replication proteins in salinity tolerance of plants. In: Ganie S.A., Wani S.H. (eds.): Genetics of Salt Tolerance in Plants. CABI, 24-42. ISBN: 978-1-80062-301-9 Go to original source...
  47. Guo T., Gull S., Ali M.M., Yousef A.F., Ercisli S., Kalaji H.M., Telesiñski A., Auriga A., Wróbel J., Radwan N.S., Ghareeb R.Y. (2022): Heat stress mitigation in tomato (Solanum lycopersicum L.) through foliar application of gibberellic acid. Scientific Reports, 12: 11324. Go to original source... Go to PubMed...
  48. Gupta R., Chakrabarty S.K. (2013): Gibberellic acid in plant: still a mystery unresolved. Plant Signaling and Behavior, 8: 25504. Go to original source... Go to PubMed...
  49. Gurmani A.R., Wang X., Rafique M., Jawad M., Khan A.R., Khan Q.U., Ahmed R., Fiaz S. (2022): Exogenous application of gibberellic acid and silicon to promote salinity tolerance in pea (Pisum sativum L.) through Na+ exclusion. Saudi Journal of Biological Sciences, 29: 10330. Go to original source... Go to PubMed...
  50. Gururani M., Mohanta T., Bae H. (2015): Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. International Journal of Molecular Sciences, 16: 19055-19085. Go to original source... Go to PubMed...
  51. Hadif W.M. (2019): Interaction effects of drought episode after temporary wilting point and gibberellic acid (GA3) on the growth and yield of sesame (Sesamum indicum L.). Plant Archives, 19: 4307-4315.
  52. Hamoda A., Khojah E.Y., Radhi K.S. (2025): Synergistic effects of herbicides and gibberellic acid on wheat yield and quality. Scientific Reports, 15: 7496. Go to original source... Go to PubMed...
  53. Hasan S., Sehar Z., Khan N.A.G. (2020): Gibberellic acid and sulfur-mediated reversal of cadmium-inhibited photosynthetic performance in mungbean (Vigna radiata L.) involves nitric oxide. Journal of Plant Growth Regulation, 39: 1605-1615. Go to original source...
  54. Hasanuzzaman M., Bhuyan M.H.M.B., Zulfiqar F., Raza A., Mohsin S.M., Mahmud J.A., Fujita M., Fotopoulos V. (2020): Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9: 1-52. Go to original source... Go to PubMed...
  55. Hattori Y., Nagai K., Furukawa S., Song X.J., Kawano R., Sakakibara H., Wu J., Matsumoto T., Yoshimura A., Kitano H., Matsuoka M., Mori H., Ashikari M. (2009): The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 460: 1026-1030. Go to original source... Go to PubMed...
  56. Hedden P. (2020): The current status of research on gibberellin biosynthesis. Plant and Cell Physiology, 61: 1832-1849. Go to original source... Go to PubMed...
  57. Hedden P., Thomas S.G. (2012): Gibberellin biosynthesis and its regulation. Biochemical Journal, 444: 11-25. Go to original source... Go to PubMed...
  58. Hoque M.N., Imran S., Hannan A., Paul N.C., Mahamud M.A., Chakrobortty J., Sarker P., Irin I.J., Brestic M., Rhaman M.S. (2022): Organic amendments for mitigation of salinity stress in plants: a review. Life, 12: 1632. Go to original source... Go to PubMed...
  59. Hu Z., Weijian L., Yali F., Huiquan L. (2018): Gibberellic acid enhances postharvest toon sprout tolerance to chilling stress by increasing the antioxidant capacity during the short-term cold storage. Scientia Horticulturae, 14: 184-91. Go to original source...
  60. Iftikhar A., Ali S., Yasmeen T., Arif M.S., Zubair M., Rizwan M., Alhaithloul H.A.S., Alayafi A.A.M., Soliman M.H. (2019): Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress. Environmental Pollution, 254: 9. Go to original source... Go to PubMed...
  61. Iftikhar A., Rizwan M., Adrees M., Ali S., Rehman M.Z., Qayyum M.F., Hussain A. (2020): Effect of gibberellic acid on growth; biomass; and antioxidant defense system of wheat (Triticum aestivum L.) under cerium oxide nanoparticle stress. Environmental Science and Pollution Research, 27: 33809-33820. Go to original source... Go to PubMed...
  62. Imran Q.M., Kamran M., Rehman S.U., Ghafoor A., Falak N., Kim K.M., Lee I.J., Yun B.W., Jamil M. (2016): GA mediated OsZAT-12 expression improves salt resistance of rice. International Journal of Agriculture and Biology, 18: 330‒336. Go to original source...
  63. Iqbal M.S., Zahoor M., Akbar M., Ahmad K., Hussain S., Munir S., Ali M.A., Arshad N., Masood H., Zafar S., Ahmad T., Shaheen N., Mashooq R., Sajjad H., Shahbaz K., Arshad H., Fatima N., Ansar B., Islam M. (2022): Alleviating the deleterious effects of salt stress on wheat (Triticum aestivum L.) by foliar application of gibberellic acid and salicylic acid. Applied Ecology and Environmental Research, 20: 119-134. Go to original source...
  64. Islam M.R., Rahman M.M., Mohi-Ud-Din M., Akter M., Zaman E., Keya S.S., Hasan M., Hasanuzzaman M. (2022): Cytokinin and gibberellic acid-mediated waterlogging tolerance of mungbean (Vigna radiata L. Wilczek). PeerJ, 10: e12862. Go to original source... Go to PubMed...
  65. Islam M.R., Hasan M., Akter N., Akhtar S. (2021): Gibberellic acid alleviate the effect of waterlogging in mungbean (Vigna radiata L. Wilczek). Journal Clean WAS, 5: 21-26. Go to original source...
  66. Islam S., Biswas P.K., Amin A.K.M.R., Fujita M., Paul A.K., Mahmud J.A., Hasanuzzaman M. (2022): Germination and growth performance of seedlings of ascorbic acid; silicon and gibberellic acid treated secondary seed of wheat under salt stress. Bangladesh Agronomy Journal, 25: 115-128. Go to original source...
  67. Jan A.U., Shah A., Hadi F. (2019): Role of potassium, zinc and gibberellic acid in increasing drought stress tolerance in sunflower (Helianthus annuus L.). Pakistan Journal of Botany, 51: 809-815. Go to original source...
  68. Janah I., Ben-Laouane R., Elhasnaoui A., Anli M., Meddich A. (2024): The induction of salt stress tolerance by gibberellic acid treatment in Stevia rebaudiana Bertoni plants. International Journal of Plant Biology, 15: 505-516. Go to original source...
  69. Javed T., Ali M.M., Shabbir R., Anwar R., Afzal I., Mauro R.P. (2021): Alleviation of copper-induced stress in pea (Pisum sativum L.) through foliar application of gibberellic acid. Biology, 10: 120. Go to original source... Go to PubMed...
  70. Ji P., Tang X., Jiang Y., Tong Y., Gao P., Han W. (2015): Potential of gibberellic acid 3 (GA3) for enhancing the phytoremediation efficiency of Solanum nigrum L. Bulletin of Environmental Contamination and Toxicology, 95: 810-814. Go to original source... Go to PubMed...
  71. Jogawat A. (2019): Osmolytes and their role in abiotic stress tolerance in plants. In: Roychoudhury A., Tripathi D. (eds.): Molecular Plant Abiotic Stress: Biology and Biotechnology. UK, Wiley, 91-104. ISBN: 9781119463696 Go to original source...
  72. Kaneko M., Itoh H., Inukai Y., Sakamoto T., Ueguchi-Tanaka M., Ashikari M., Matsuoka M. (2003): Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? The Plnat Journal, 35: 104-115. Go to original source... Go to PubMed...
  73. Kaya C., Sarioğlu A., Ashraf M., Alyemeni M.N., Ahmad P. (2020): Gibberellic acid-induced generation of hydrogen sulfide alleviates boron toxicity in tomato (Solanum lycopersicum L.) plants. Plant Physiology and Biochemistry, 153: 53-63. Go to original source... Go to PubMed...
  74. Khan M.N., Khan Z., Luo T., Liu J., Rizwan M., Zhang J., Xu Z., Wu H., Hu L. (2020a): Seed priming with gibberellic acid and melatonin in rapeseed: consequences for improving yield and seed quality under drought and non-stress conditions. Industrial Crops and Products,156: 11285. Go to original source...
  75. Khan A., Bilal S., Khan A.L., Imran M., Shahzad R., Al-Harrasi A., Al-Rawahi A., Al-Azhri M., Mohanta T.K., Lee I.J. (2020b): Silicon and gibberellins: synergistic function in harnessing ABA signaling and heat stress tolerance in date palm (Phoenix dactylifera L.). Plants, 9: 620. Go to original source... Go to PubMed...
  76. Khan S., Alvi A.F., Khan N.A. (2024): Role of ethylene in the regulation of plant developmental processes. Stresses, 4: 28-53. Go to original source...
  77. Khan S.U., Gurmani A.R., Jalal-Ud-Din Qayyum A., Abbasi K.S., Liaquat M., Zahoor A. (2016): Exogenously applied gibberellic acid; indole acetic acid and kinetin as potential regulators of source-sink relationship; physiological and yield attributes in rice (Oryza sativa) genotypes under water deficit conditions. International Journal of Agriculture and Biology, 18: 139-145. Go to original source...
  78. Kildegaard K.R., Arnesen J.A., Adiego-Pérez B., Rago D., Kristensen M., Klitgaard A.K., Hansen E.H., Hansen J., Borodina I. (2021): Tailored biosynthesis of gibberellin plant hormones in yeast. Metabolic Engineering, 66: 1-11. Go to original source... Go to PubMed...
  79. Krishna K., Mahadevaswamy M. (2019): The effect of exogenous application of gibberellic acid on two salt stressed paddy cultivars during seed germination. International Journal for Research in Applied Science and Engineering Technology, 7: 327-332. Go to original source...
  80. Kuronuma T., Funaki R., Watanabe H. (2024): Exogenous application of gibberellic acid reduces antioxidant capacity of leaves, resulting in increased Tipburn damages in Lisianthus cultivars. Scientia Horticulturae, 332: 113193. Go to original source...
  81. Lamlom S.F., Abdelghany A.M., Farouk A.S., Alwakel E.S., Makled K.M., Bukhari N.A., Hatamleh A.A., Ren H., El-Sorady G.A., Shehab A.A. (2025): Biochemical and yield response of spring wheat to drought stress through gibberellic and abscisic acids. BMC Plant Biology, 25: 5. Go to original source... Go to PubMed...
  82. Li G., Zhu C., Gan L., Ng D., Xia K. (2015): GA3 enhances root responsiveness to exogenous IAA by modulating auxin transport and signaling in Arabidopsis. Plant Cell Reports, 34: 483-494. Go to original source... Go to PubMed...
  83. Liu J., Qiu G., Liu C., Li H., Chen X., Fu Q., Lin Y., Guo B. (2022): Salicylic acid, a multifaceted hormone, combats abiotic stresses in plants. Life, 12: 886. Go to original source... Go to PubMed...
  84. Liu Q.Y., Guo G.S., Qiu Z.F., Li X.D., Zeng B.S., Fan C.J. (2018): Exogenous GA3 application altered morphology; anatomic and transcriptional regulatory networks of hormones in Eucalyptus grandis. Protoplasma, 255: 1107-1119. Go to original source... Go to PubMed...
  85. Liu X., Wang X., Yin L., Deng X., Wang S. (2018): Exogenous application of gibberellic acid participates in up-regulation of lipid biosynthesis under salt stress in rice. Theoretical and Experimental Plant Physiology, 30: 335-345. Go to original source...
  86. Lorrai R., Boccaccini A., Ruta V., Possenti M., Costantino P., Vittorioso P. (2018): ABA inhibits hypocotyl elongation acting on gibberellins, DELLA proteins and auxin. AoB Plants, 10: ply061. Go to original source...
  87. Lyons R., Manners J.M., Kazan K. (2013): Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Reports, 32: 815-827. Go to original source... Go to PubMed...
  88. Miri M., Ghooshchi F., Tohidi-Moghadam H.R., Larijani H.R., Kasraie P. (2021): Ameliorative effects of foliar spray of glycine betaine and gibberellic acid on cowpea (Vigna unguiculata L. Walp.) yield affected by drought stress. Arabian Journal of Geosciences, 14: 830. Go to original source...
  89. Miura K., Okamoto H., Okuma E., Shiba H., Kamada H., Hasegawa P.M., Murata Y. (2013): SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. The Plant Journal, 73: 91-104. Go to original source... Go to PubMed...
  90. Moumita, Al Mahmud J., Biswas P.K., Nahar K., Fujita M., Hasanuzzaman M. (2019): Exogenous application of gibberellic acid mitigates drought-induced damage in spring wheat. Acta Agrobotanica, 72: 1776. Go to original source...
  91. Nagar S., Singh V.P., Arora A., Dhakar R., Singh N., Singh G.P., Meena S., Kumar S., Shiv Ramakrishnan R. (2021): Understanding the role of gibberellic acid and paclobutrazol in terminal heat stress tolerance in wheat. Frontiers in Plant Science, 12: 692252. Go to original source... Go to PubMed...
  92. O'Neill D.P., Davidson S.E., Clarke V.C., Yamauchi Y., Yamaguchi S., Kamiya Y., Reid J.B., Ross J.J. (2010): Regulation of the gibberellin pathway by auxin and DELLA proteins. Planta, 232: 1141-1149. Go to original source... Go to PubMed...
  93. Ogugua U.V., Kanu S.A., Ntushelo K. (2022): Gibberellic acid improves growth and reduces heavy metal accumulation: a case study in tomato (Solanum lycopersicum L.) seedlings exposed to acid mine water. Heliyon, 8: e12399. Go to original source... Go to PubMed...
  94. Oh E., Zhu J.Y., Bai M.Y., Arenhart R.A., Sun Y., Wang Z.Y. (2014): Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife, 3: e03031. Go to original source... Go to PubMed...
  95. Pal P., Yadav K., Kumar K., Singh N. (2016): Effect of gibberellic acid and potassium foliar sprays on productivity and physiological and biochemical parameters of Parthenocarpic cucumber cv. `Seven Star F'. Journal of Horticultural Research, 24: 93-100. Go to original source...
  96. Parthasarathi T., Firdous S., Mariya David E., Lesharadevi K., Djanaguiraman M. (2022): Effects of high temperature on crops. In: Ngui Kimatu J. (ed.): Advances in Plant Defense Mechanisms. London, InTech. ISBN: 978-1-80355-802-8 Go to original source...
  97. Patel J., Mishra A. (2021): Plant aquaporins alleviate drought tolerance in plants by modulating cellular biochemistry, root-architecture, and photosynthesis. Physiologia Plantarum, 172: 1030-1044. Go to original source... Go to PubMed...
  98. Pourasadollahi A., Siosemardeh A., Hosseinpanahi F., Sohrabi Y.P. (2019): Physiological and agro-morphological response of potato to drought stress and hormone application. Journal of Plant Physiology and Breeding, 9: 47-61.
  99. Prajapati K.S., Pandey P.P., Suman M. (2018): Impact of gibberellic acid under salinity stress on tomato (Lycopersicon esculentum L.). Journal of Pharmacognosy and Phytochemistry, 7: 2324-2328.
  100. Rady M.M., Boriek S.H.K., Abd El-Mageed T.A., Seif El-Yazal M.A., Ali E.F., Hassan F.A.S., Abdelkhalik A. (2021): Exogenous gibberellic acid or dilute bee honey boosts drought stress tolerance in Vicia faba by rebalancing osmoprotectants, antioxidants, nutrients, and phytohormones. Plants, 10: 748. Go to original source... Go to PubMed...
  101. Rashed N., Shala A., Mahmoud M.A. (2017): Alleviation of salt stress in Nigella sativa L. by gibberellic acid and rhizobacteria. Alexandria Science Exchange Journal, 38: 785-799. Go to original source...
  102. Rauf F., Ullah M., Kabir M.H., Mia M., Rhaman M.S. (2022): Gibberellic acid enhances the germination and growth of maize under salinity stress. Asian Plant Research Journal, 10: 5-15. Go to original source...
  103. Rayee R., Anh L.H., Xuan T.D. (2025): Induction of UV-B stress tolerance by momilactones and gibberellic acid in rice. Crops, 5: 6. Go to original source...
  104. Raza A., Tabassum J., Fakhar A.Z., Sharif R., Chen H., Zhang C., Ju L., Fotopoulos V., Siddique K.H., Singh R.K., Zhuang W., Varshney R.K. (2022): Smart reprograming of plants against salinity stress using modern biotechnological tools. Critical Reviews in Biotechnology, 43: 1035-1062. Go to original source... Go to PubMed...
  105. Rhaman M.S., Imran S., Karim M.M., Chakrobortty J., Mahamud M.A., Sarker P., Tahjib-Ul-Arif M., Robin A.H.K., Ye W., Murata Y., Hasanuzzaman M. (2021): 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress. Plant Cell Reports, 40: 1451-1469. Go to original source... Go to PubMed...
  106. Rhaman M.S., Tania S.S., Imran S., Rauf F., Kibria M.G., Ye W., Hasanuzzaman M., Murata Y. (2022): Seed priming with nanoparticles: an emerging technique for improving plant growth, development, and abiotic stress tolerance. Journal of Soil Science and Plant Nutrition, 22: 4047-4062. Go to original source...
  107. Saleem M., Fahad S., Adnan M., Ali M., Rana M.S., Kamran M., Ali Q., Hashem I.A., Bhantana P., Ali M., Hussain R.M. (2020): Foliar application of gibberellic acid endorsed phytoextraction of copper and alleviates oxidative stress in jute (Corchorus capsularis L.) Go to original source...
  108. plant grown in highly copper-contaminated soil of China. Environmental Science and Pollution Research, 27: 37121-37133.
  109. Salih S., Tuncturk R. (2020): Low doses of gibberellic acid can enhance germination of wheat seed under drought stress. Advances in Crop Science and Technology, 8: 432.
  110. Sangwan S., Shameem N., Yashveer S., Tanwar H., Parray J.A., Jatav H.S., Sharma S., Punia H., Sayyed R.Z., Almalki W.H., Poczai P. (2022): Role of salicylic acid in combating heat stress in plants: insights into modulation of vital processes. Frontiers in Bioscience (Landmark Edition), 27: 310. Go to original source... Go to PubMed...
  111. Sarwar G., Fatima M., Danish S., Alharbi S.A., Ansari M.J., Alarfa A.A. (2025): Enhancing wheat growth under chromium toxicity using gibberellic acid and microbial inoculants as modulating agents. Scientific Reports, 15: 8356. Go to original source... Go to PubMed...
  112. Sarwar N., Atique-ur-Rehman, Farooq O., Mubeen K., Wasaya A., Nouman W., Ali M.Z., Shehzad M. (2017): Exogenous application of gibberellic acid improves the maize crop productivity under scarce and sufficient soil moisture condition. Cercetari Agronomice in Moldova, 50: 65-73. Go to original source...
  113. Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., Battaglia M.L. (2021): Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10: 259. Go to original source... Go to PubMed...
  114. Shah S.H., Islam S., Mohammad F., Siddiqui M.H. (2023): Gibberellic acid: a versatile regulator of plant growth, development and stress responses. Journal of Plant Growth Regulation, 42: 7352-7373. Go to original source...
  115. Shahzad K., Hussain S., Arfan M., Hussain S., Waraich E.A., Zamir S., Saddique M., Rauf A., Kamal K.Y., Hano C., El-Esawi M.A. (2021): Exogenously applied gibberellic acid enhances growth and salinity stress tolerance of maize through modulating the morpho-physiological, biochemical and molecular attributes. Biomolecules, 11: 1005. Go to original source... Go to PubMed...
  116. Shahzad M.A., Younis U., Ehsan A., Alarfaj A.A., Alharbi S.A., Ansari M.J. (2024): Impact of gibberellic acid GA3, quantum dot biochar, and rhizosphere bacteria on fenugreek plant growth and stress responses under lead stress. Scientific Reports, 14: 29612. Go to original source... Go to PubMed...
  117. Shu K., Zhou W., Chen F., Luo X., Yang W. (2018): Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Frontiers in Plant Science, 9: 416. Go to original source... Go to PubMed...
  118. Siddiqui M.H., Alamri S., Alsubaie Q.D., Ali H.M.M. (2020): Melatonin and gibberellic acid promote growth and chlorophyll biosynthesis by regulating antioxidant and methylglyoxal detoxification system in tomato seedlings under salinity. Journal of Plant Growth Regulation, 39: 1488-1502. Go to original source...
  119. Sona S., El-Nwehy S., Ramzy R., Afify M. (2023): Utilization of gibberellic acid (GA3) and mepiquat chloride (M.C) as growth regulators on maize to alleviate salinity stress. SABRAO Journal of Breeding and Genetics, 55: 1654-1665. Go to original source...
  120. Stewart Lilley J.L., Gan Y., Graham I.A., Nemhauser J.L. (2013): The effects of DELLA s on growth change with developmental stage and brassinosteroid levels. The Plant Journal, 76: 165-173. Go to original source... Go to PubMed...
  121. Sugiura D., Sawakami K., Kojima M., Sakakibara H., Terashima I., Tateno M. (2015): Roles of gibberellins and cytokinins in regulation of morphological and physiological traits in Polygonum cuspidatum responding to light and nitrogen availabilities. Functional Plant Biology, 42: 397. Go to original source... Go to PubMed...
  122. Tani T., Sobajima H., Okada K., Chujo T., Arimura S., Tsutsumi N., Nishimura M., Seto H., Nojiri H., Yamane H. (2008): Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta, 227: 517-526. Go to original source... Go to PubMed...
  123. Tong H., Xiao Y., Liu D., Gao S., Liu L., Yin Y., Jin Y., Qian Q., Chu C. (2014): Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. The Plant Cell, 26: 4376-4393. Go to original source... Go to PubMed...
  124. Tsegay B.A., Andargie M. (2018): Seed priming with gibberellic acid (GA3) alleviates salinity induced inhibition of germination and seedling growth of Zea mays L., Pisum sativum var. abyssinicum A. Braun and Lathyrus sativus L. Journal of Crop Science and Biotechnology, 21: 261-267. Go to original source...
  125. Ullah A., Hazrat A., Khan B.A., Saqib S., Ullah F. (2025): Mitigating lead stress in barley using gibberellic acid (GA3): effects on morpho-physiological and biochemical parameters. Journal of Plant Growth Regulation. doi.org/10.1007/s00344-025-11654-2 Go to original source...
  126. Unterholzner S.J., Rozhon W., Papacek M., Ciomas J., Lange T., Kugler K.G., Mayer K.F., Sieberer T., Poppenberger B. (2015): Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell, 27: 2261-2272. Go to original source... Go to PubMed...
  127. Uzal O., Yasar F. (2017): Effects of GA3 hormone treatments on ion uptake and growth of pepper plants under cadmium stress. Applied Ecology and Environmental Research, 15: 1347-1357. Go to original source...
  128. Vardhan K.H., Kumar P.S., Panda R.C.A. (2019): A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. Journal of Molecular Liquids, 290: 7. Go to original source...
  129. Vetrano F., Moncada A., Miceli A. (2020): Use of gibberellic acid to increase the salt tolerance of leaf lettuce and rocket grown in Go to original source...
  130. a floating system. Agronomy, 10: 505.
  131. Wang B., Wei H., Xue Z., Zhang W.H. (2017): Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa). Annals of Botany, 119: 945-956. Go to original source... Go to PubMed...
  132. Wang Y., Mostafa S., Zeng W., Jin B. (2021): Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. International Journal of Molecular Sciences, 22: 8568. Go to original source... Go to PubMed...
  133. Wang Y.H., Zhang G., Chen Y., Gao J., Sun Y.R., Sun M.F., Chen J.P. (2019): Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress. Acta Physiologiae Plantarum, 41: 1-10. Go to original source...
  134. Wani S.H., Kumar V., Shriram V., Sah S.K.P. (2016): Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal, 4: 162-176. Go to original source...
  135. Wen Y., Su S.C., Ma L.Y., Wang X.N. (2018): Effects of gibberellic acid on photosynthesis and endogenous hormones of Camellia oleifera Abel. in 1st and 6th leaves. Journal of Forest Research, 23: 309-317. Go to original source...
  136. Wheeldon C.D., Bennett T.T. (2021): There end and back again: an evolutionary perspective on long-distance coordination of plant growth and development. Seminars in Cell and Developmental Biology, 109: 55-67. Go to original source... Go to PubMed...
  137. Willige B.C., Isono E., Richter R., Zourelidou M., Schwechheimer C. (2011): Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell, 23: 2184-2195. Go to original source... Go to PubMed...
  138. Xie Q., Essemine J., Pang X., Chen H., Jin J., Cai W. (2021): Abscisic acid regulates the root growth trajectory by reducing auxin transporter PIN2 protein levels in Arabidopsis thaliana. Frontiers in Plant Science, 12: 632676. Go to original source... Go to PubMed...
  139. Yan R., Zhang T., Wang Y., Wang W., Sharif R., Liu J., Dong Q., Luan H., Zhang X., Li H., Guo S., Qi G., Jia P. (2024): The apple MdGA2ox7 modulates the balance between growth and stress tolerance in an anthocyanin-dependent manner. Plant Physiology and Biochemistry, 212: 108707. Go to original source... Go to PubMed...
  140. Yang X., Lu M., Wang Y., Wang Y., Liu Z., Chen S. (2021): Response mechanism of plants to drought stress. Horticulture, 7: 50. Go to original source...
  141. Yin C., Gan L., Ng D., Zhou X., Xia K. (2007): Decreased panicle-derived indole-3-acetic acid reduces gibberellin A1 level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A. Journal of Experimental Botany, 58: 2441-2449. Go to original source... Go to PubMed...
  142. Yuan H., Zhao L., Guo W., Yu Y., Tao L., Zhang L., Song X., Huang W., Cheng L., Chen J., Guan F., Wu G., Li H. (2019): Exogenous application of phytohormones promotes growth and regulates expression of wood formation-related genes in Populus simonii × P. nigra. International Journal of Molecular Sciences, 20: 792. Go to original source... Go to PubMed...
  143. Zhang W., Abdelrahman M., Jiu S., Guan L., Han J., Zheng T., Jia H., Song C., Fang J., Wang C. (2019): VvmiR160s/VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC Plant Biology, 19: 1-22. Go to original source... Go to PubMed...
  144. Zhang X., Ma M., Wu C., Huang S., Danish S. (2023): Mitigation of heat stress in wheat (Triticum aestivum L.) via regulation of physiological attributes using sodium nitroprusside and gibberellic acid. BMC Plant Biology, 23: 302. Go to original source... Go to PubMed...
  145. Zhu G., Yin J., Guo X., Chen X., Zhi W., Liu J., Wang Y., Lu H., Jiao X., Zhou G. (2019): Gibberellic acid amended antioxidant enzyme and osmotic regulation to improve salt tolerance of okra at early growth stage. International Journal of Agriculture and Biology, 22: 270-276.
  146. Zhu Z., Ding Y., Zhao J., Nie Y., Zhang Y., Sheng J., Tang X. (2016): Effects of postharvest gibberellic acid treatment on chilling tolerance in cold-stored tomato (Solanum lycopersicum L.) fruit. Food and Bioprocess Technology, 9: 1202-1209. Go to original source...
  147. Zhuang L., Ge Y., Wang J., Yu J., Yang Z., Huang B. (2019): Gibberellic acid inhibition of tillering in tall fescue involving crosstalks with cytokinins and transcriptional regulation of genes controlling axillary bud outgrowth. Plant Science, 287: 110168. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.