Plant Soil Environ., 2025, 71(9):621-637 | DOI: 10.17221/308/2025-PSE

Correlation of DGT-P and conventional soil P tests with rye shoot biomass and P uptake across temperate soils with differential soil propertiesOriginal Paper

Alireza Golestanifard1,2, Markus Puschenreiter ORCID...1, Robert Manglberger1, Marion Gotthard2, Herbert Eigner3, Bernhard Spangl4, Walter Wenzel1, Jakob Santner2,5
1 University of Natural Resources and Life Sciences Vienna, Institute of Soil Research, Tulln, Austria
2 University of Natural Resources and Life Sciences Vienna, Institute of Agronomy, Tulln, Austria
3 AGRANA Research & Innovation Centre GmbH, Tulln, Austria
4 University of Natural Resources and Life Sciences Vienna, Institute of Statistics, Vienna, Austria
5 Justus Liebig University Giessen, Institute of Plant Nutrition, Giessen, Germany

Several phosphorus (P) extraction tests are being used as soil P tests, but many studies have shown that the correlation of extractable P with plant yield and P uptake varies and sometimes is poor. Infinite sink extraction methods may be superior in estimating plant P availability. Soil P tests were evaluated for their power in determining plant-available P pools. Thirty arable soils covering different soil groups were tested for soil characteristics and extractable P pools. Rye was grown on these soils for six weeks and analysed for shoot yield and shoot P concentrations. Correlations between soil P concentrations, shoot yield and shoot P content were investigated. Extractable P pools mostly significantly correlated with soil pH, texture and amorphous iron oxide content. High and significant correlations were found among most of the extractable soil P pools, except for calcium acetate lactate (CAL)-extractable P. In contrast to previous studies, diffusive gradients in thin films (DGT)-extractable P employed in our pot experiment did not perform better than other extraction methods in correlating with plant available P and uptake, likely because water availability was not a limiting factor of P diffusion. Plant-available P in the soils investigated in this study was controlled by P quantity (i.e. the amount of adsorbed P) and P intensity (i.e. the soil solution P). We conclude that the advantage of infinite sink extraction methods over equilibrium-based techniques becomes less apparent if P is not strongly intensity-controlled and water availability is not a limiting factor of P diffusion.

Keywords: phosphorus; macronutrient; extractability; soil extraction; bioavailability; plant biomass; Mitscherlich function

Received: July 16, 2025; Revised: August 26, 2025; Accepted: August 27, 2025; Prepublished online: September 25, 2025; Published: September 26, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Golestanifard A, Puschenreiter M, Manglberger R, Gotthard M, Eigner H, Spangl B, et al.. Correlation of DGT-P and conventional soil P tests with rye shoot biomass and P uptake across temperate soils with differential soil properties. Plant Soil Environ. 2025;71(9):621-637. doi: 10.17221/308/2025-PSE.
Download citation

References

  1. Barrow N.J. (2017): The effects of pH on phosphate uptake from the soil. Plant and Soil, 410: 401-410. Go to original source...
  2. Batten G.D., Wardlaw I.F., Aston M.J. (1986): Growth and the distribution of phosphorus in wheat developed under various phosphorus and temperature regimes. Australian Journal of Agricultural Research, 37: 459-469. Go to original source...
  3. Becket P.H.T., White R.E. (1964): Studies on the phosphate potentials of soils. Part III: the pool of labile inorganic phosphate. Plant and Soil, 21: 253-282. Go to original source...
  4. Burkitt L.L., Mason S.D., Dougherty W.J., Sale P.W.G. (2016): The ability of the DGT soil phosphorus test to predict pasture response in Australian pasture soils - a preliminary assessment. Soil Use and Management, 32: 27-35. Go to original source...
  5. Degryse F., Smolders E., Zhang H., Davison W. (2009): Predicting availability of mineral elements to plants with the DGT technique: a review of experimental data and interpretation by modelling. Environmental Chemistry, 6: 198-218. Go to original source...
  6. Duboc O., Santner J., Golestanifard A., Zehetner F., Tacconi J., Wenzel W.W. (2017): Predicting phosphorus availability from chemically diverse conventional and recycling fertilizers. Science of the Total Environment, 599-600: 1160-1170. Go to original source... Go to PubMed...
  7. Gahoonia T.S., Raza S., Nielsen N.E. (1994): Phosphorus depletion in the rhizosphere as influenced by soil moisture. Plant and Soil, 159: 213-218. Go to original source...
  8. Hill B., Santner J., Spiegel H., Puschenreiter M., Wenzel W.W. (2021): Diffusive gradients in thin films predicts crop response better than calcium-acetate-lactate extraction. Nutrient Cycling in Agroecosystems, 121: 227-240. Go to original source...
  9. Houba V.J.G., Temminghoff E.J.M., Gaikhorst G.A., van Vark W. (2000): Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis, 31: 1299-1396. Go to original source...
  10. Jordan-Meille L., Rubæk G.H., Ehlert P.A.I., Genot V., Hofman G., Goulding K., Recknagel J., Provolo G., Barraclough P. (2012): An overview of fertilizer-P recommendations in Europe: soil testing, calibration and fertilizer recommendations. Soil and Use Management, 28: 419-435. Go to original source...
  11. Kulhánek M., Balík J., Èerný J., Vanìk V. (2009): Evaluation of phosphorus mobility in soil using different extraction methods. Plant, Soil and Environment, 55: 267-272. Go to original source...
  12. Lindsay W.L. (1979): Chemical Equilibria in Soils. New York, John Wiley & Sons.
  13. Marschner P. (2012): Mineral Nutrition of Higher Plants. 3rd Edition. London, Academic Press, 49-70.
  14. Mason S., McNeill A., McLaughlon M.J., Zhang H. (2010): Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods. Plant and Soil, 337: 243-258. Go to original source...
  15. Mehlich A. (1984): Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409-1416. Go to original source...
  16. Mehra O.P., Jackson M.L. (1960): Iron oxide removal from soils and clays by a dithionate-citrate system buffered with sodium carbonate. In: Proceedings of the National Conference on Clays and Clay Minerals. New York, Pergamon Press, 317-327. Go to original source...
  17. Menezes-Blackburn D., Zhang H., Stutter M., Giles C.D., Darch T., George T.S., Shand C., Lumsdon D., Blackwell M., Wearing C., Cooper P., Wendler R., Brown L., Haygarth P.M. (2016): A holistic approach to understanding the desorption of phosphorus in soils. Environmental Sci-ence and Technology, 50: 3371-3381. Go to original source... Go to PubMed...
  18. Menzies N.W., Kusumo B., Moody P.W. (2005): Assessment of P availability in heavily fertilized soils using the diffusive gradient in thin films (DGT) technique. Plant and Soil, 269: 1-9. Go to original source...
  19. Middleton K.R., Toxopeus M.R.J. (1973): Diagnosis and measurement of multiple soil deficiencies by a subtractive technique. Plant and Soil, 38: 219-226. Go to original source...
  20. Mundus S., Carstensen A., Husted S. (2017): Predicting phosphorus availability to spring barley (Hordeum vulgare) in agricultural soils of Scandi-navia. Field Crops Research, 212: 1-10. Go to original source...
  21. Nawara S., Van Dael T., Merckx R., Amery F., Elsen A., Odeurs W., Vandendriessche H., McGrath S., Roisin C., Jouany C., Pellerin S., Denoroy P., Eichler-Löbermann B., Börjesson G., Goos P., Akkermans W., Smolders E. (2017): A comparison of soil tests for available phosphorus in long-term field experiments in Europe. European Journal of Soil Science, 68: 873-885. Go to original source...
  22. Olsen S.R., Cole C.V., Watanabe F.S., Dean L.A. (1954): Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 939. U.S. Gov. Print. Office, Washington D.C.
  23. Peaslee D.E., Phillips R.E. (1981): Phosphorus dissolution-desorpti on in relation to bioavailability and environmental pollution. In: Dowdy R.H., Ryan J.A., Volk V.V., Baker D.E. (eds.): Chemistry in the Soil Environment. Madison, American Society of Agronomy-Soil Science Society of America, 241-259. Go to original source...
  24. Pypers P., Van Loon L., Diels J., Abaidoo R., Smolders E., Merckx R. (2006): Plant-available P for maize and cowpea in P-deficient soils from the Nigerian Northern Guinea savanna - comparison of L- and E-values. Plant and Soil, 283: 251-264. Go to original source...
  25. R Core Team (2020): R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing. Available at: https://www.R-project.org/
  26. Recena R., García-López A.M., Quintero J.M., Skyttä A., Ylivainio K., Santner J., Buenemann E., Delgado A. (2022): Assessing the phosphorus demand in European agricultural soils based on the Olsen method. Journal of Cleaner Production, 379: 134749. Go to original source...
  27. Recena R., Torrent J., del Campillo M.C., Delgado A. (2015): Accuracy of Olsen P to assess plant P uptake in relation to soil properties and P forms. Agronomy for Sustainable Development, 35: 1571-1579. Go to original source...
  28. Santner J., Mannel M., Burrell L.D., Hoefer C., Kreuzeder A., Wenzel W.W. (2015): Phosphorus uptake by Zea mays L. is quantitatively predicted by infinite sink extraction of soil P. Plant and Soil, 386: 371-383. Go to original source... Go to PubMed...
  29. Santner J., Zhang H., Leitner D., Schnepf A., Prohaska T., Puschenreiter M., Wenzel W.W. (2012): High-resolution chemical imaging of labile phosphorus in the rhizosphere of Brassica napus L. cultivars. Environmental and Experimental Botany, 77: 219-226. Go to original source...
  30. Schüller H. (1969): The CAL-method, a new method to determine the available phosphate in soils. Zeitschrift für Pflanzenernährung und Bodenkunde, 123: 49-63. (In German) Go to original source...
  31. Schwertmann U. (1964): Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung und Bodenkunde, 105: 194-202. Go to original source...
  32. Six L., Pypers P., Degryse F., Smolders E., Merckx R. (2012): The performance of DGT versus conventional soil phosphorus tests in tropical soils - an isotope dilution study. Plant and Soil, 359: 267-279. Go to original source...
  33. Six L., Smolders E., Merckx E. (2013): The performance of DGT versus conventional soil phosphorus tests in tropical soils - maize and rice responses to P application. Plant and Soil, 366: 49-66. Go to original source...
  34. Sparks D.L. (1996): Methods of Soil Analysis. Part 3. Chemical Methods. Madison, American Society of Agronomy-Soil Science Society of America.
  35. Speirs S.D., Scott B.J., Moody P.W., Mason S.D. (2013): Soil phosphorus tests II: a comparison of soil test-crop response relationships for different soil tests and wheat. Crop and Pasture Science, 64: 469-479. Go to original source...
  36. Steffens D. (1994): Phosphorus release kinetics and extractable phosphorus after long-term fertilization. Soil Science Society of America Journal, 58: 1702-1708. Go to original source...
  37. VDLUFA (1991): Handbuch der landwirtschaftlichen Versuchs-und Untersuchungsmethodik-Band 1 Die Untersuchung von Böden 1. Darmstadt, VDLUFA-Verlag.
  38. VDLUFA (2002): Bestimmung der durch Elektro-Ultrafiltration (EUF) lösbaren Anteile von Phosphor, Kalium, Calcium, Magnesium, Natrium, Schwefel und Bor. VDLUFA, Methodenbuch I, A 6.4.2.
  39. VDLUFA (2012): Methode A 6.2.1.1 - Bestimmung von Phosphor und Kalium im Calcium-Acetat-Lactat-Auszug, in Verband Deutscher Land-wirtschaftlicher Untersuchungs- und Forschungsanstalten (ed.): VDLUFA-Methodenbuch, Band I, Die Untersuchung von Böden, 6th Ed. VDLUFA-Verlag, Darmstadt.
  40. Wenzel W.W., Mesmer C., Florida E.J., Puschenreiter M., Kirchmann H. (2022): Wheat yield prediction by zero sink and equilibrium-type soil phosphorus tests. Pedosphere, 32: 543-554. Go to original source...
  41. Wuenscher R., Unterfrauner H., Peticzka R., Zehetner F. (2015): A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment, 61: 86-96. Go to original source...
  42. Zbíral J., Nìmec P. (2002): Comparison of Mehlich 2, Mehlich 3, CAL, Egner, Olsen, and 0.01 M CaCl2 extractants for determination of phosphorus in soils. Communications in Soil Science and Plant Analysis, 33: 3405-3417. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.