Plant Soil Environ., 2007, 53(9):413-416 | DOI: 10.17221/2290-PSE

Survey of molecular phylogenetics

M. Talianová
Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic

Rapidly increasing amount of biological data necessarily requires techniques that would enable to extract the information hidden in the data. Methods of molecular phylogenetics are commonly used tools as well as objects of continuous research within many fields, such as evolutionary biology, systematics, epidemiology, genomics, etc. The evolutionary process not only determines relationships among species, but also allows prediction of structural, physiological and biochemical properties of biomolecules. The article provides the reader with a brief overview of common methods that are currently employed in the field of molecular phylogenetics.

Keywords: evolutionary model; distance-based methods; maximum parsimony; maximum likelihood; Bayesian inference; accuracy of phylogeny

Published: September 30, 2007  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Talianová M. Survey of molecular phylogenetics. Plant Soil Environ. 2007;53(9):413-416. doi: 10.17221/2290-PSE.
Download citation

References

  1. Akaike H. (1974): A new look at the statistical model identification. IEEE T. Automat. Contr., 19: 716-723. Go to original source...
  2. Arber W. (2000): Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol. Rev., 24: 1-7. Go to original source... Go to PubMed...
  3. Boore J.L. (2006): The use of genome-level characters for phylogenetic reconstruction. Trends Ecol. Evol., 21: 439-446. Go to original source... Go to PubMed...
  4. Cavalli-Sforza L.L., Edwards A.W.F. (1967): Phylogenetic analysis: Models and estimation procedures. Am. J. Hum. Genet., 19: 233-257.
  5. Chambers J.K., Macdonald L.E., Sarau H.M., Ames R.S., Freeman K., Foley J.J., Zhu Y., McLaughlin M.M., Murdock P., McMillan L., Trill J., Swift A., Aiyar N., Taylor P., Vawter L., Naheed S., Szekeres P., Hervieu G., Scott C., Watson J.M., Murphy A., Duzic E., Klein C., Bergsma D.J., Wilson S., Livi P. (2000): A G protein-coupled receptor for UDP-glucose. J. Biol. Chem., 15: 10767-10771. Go to original source... Go to PubMed...
  6. Dayhoff M.O., Schwartz R.M., Orcutt B.C. (1978): A model of evolutionary change in proteins. In: Dayhoff M.O. (eds.): Atlas of Protein Sequences and Structure. National Biomedical Research Foundation, Silver Spring, MD.
  7. Edwards A.W.F., Cavalli-Sforza L.L. (1963): The reconstruction of evolution. Heredity, 18: 553.
  8. Efron B. (1982): The Jackknife, the Bootstrap and other Resampling Plans. Society for Industrial and Applied Mathematics, Philadelphia. Go to original source...
  9. Felsenstein J. (1981): Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol., 17: 368-376. Go to original source... Go to PubMed...
  10. Felsenstein J. (1985): Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39: 783-791. Go to original source... Go to PubMed...
  11. Fitch W.M. (1977): On the problem of discovering the most parsimonious tree. Am. Nat., 111: 223-257. Go to original source...
  12. Fitch W.M., Margoliash E. (1967): Construction of phylogenetic trees. Science, 155: 279-284. Go to original source... Go to PubMed...
  13. Goldman N., Yang Z. (1994): A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol., 11: 725-736. Go to PubMed...
  14. Harisson C.J., Langdale J.A. (2006): A step by step guide to phylogeny reconstruction. Plant J., 45: 561-572. Go to original source... Go to PubMed...
  15. Hasegawa M., Kishino H., Yano T. (1985): Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol., 22: 160-174. Go to original source... Go to PubMed...
  16. Hendy M.D., Penny D. (1989): A framework for the quantitative study of evolutionary trees. Syst. Zool., 38: 297-309. Go to original source...
  17. Hershkovitz M.A., Leipe D.D. (1998): Phylogenetic analysis. In: Baxevanis A.D., Ouellette B.F.F. (eds.): Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Wiley Interscience, NY. Go to original source...
  18. Huelsenbeck J.P., Crandall K.A. (1997): Phylogeny estimation and hypothesis testing using maximum likelihood. Annu. Rev. Ecol. Syst., 28: 437-466. Go to original source...
  19. Huelsenbeck J.P., Ronquist F., Nielsen R., Bollback J.P. (2001): Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294: 2310-2314. Go to original source... Go to PubMed...
  20. Huson D.H., Bryant D. (2006): Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol., 23: 254-267. Go to original source... Go to PubMed...
  21. Jin G., Nakhleh L., Snir S., Tuller T. (2006): Maximum likelihood of phylogenetic networks. Bioinformatics, 22: 2604-2611. Go to original source... Go to PubMed...
  22. Jones D.T., Taylor W.R., Thornton J.M. (1992): The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci., 8: 275-282. Go to original source... Go to PubMed...
  23. Jukes T.H., Cantor C.R. (1969): Evolution of protein molecules. In: Munro H.N. (eds.): Mammalian Protein Metabolism. Academic, NY. Go to original source...
  24. Maddison W.P. (1997): Gene trees in species trees. Syst. Biol., 46: 523-536. Go to original source...
  25. Muller T., Vingron M. (2000): Modeling amino acid replacement. J. Comput. Biol., 7: 761-776. Go to original source... Go to PubMed...
  26. Rannala B., Yang Z. (1996): Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. J. Mol. Evol., 43: 304-311. Go to original source... Go to PubMed...
  27. Rodríguez F., Oliver J.L., Marin A., Medina R. (1990): The general stochastic model of nucleotide substitution. J. Theor. Biol., 142: 485-501. Go to original source... Go to PubMed...
  28. Saitou N., Nei M. (1987): The Neighbor-Joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425. Go to PubMed...
  29. Schwarz G. (1974): Estimating the dimension of a model. Ann. Stat., 6: 461-464.
  30. Sokal R.R., Michener C.D. (1958): A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull., 28: 1409-1438.
  31. Steel M. (2005): Should phylogenetic models be trying to "fit an elephant"? Trends Genet., 21: 307-309. Go to original source... Go to PubMed...
  32. Tuffley C., Steel M.A. (1998): Modelling the covarion hypothesis of nucleotide substitution. Math. Biosci., 147: 63-91. Go to original source... Go to PubMed...
  33. Wakeley J. (1994): Substitution rate variation among sites and the estimation of transition bias. Mol. Biol. Evol., 11: 436-442. Go to PubMed...
  34. Whelan S., Goldman N. (2001): A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol., 18: 691-699. Go to original source... Go to PubMed...
  35. Whelan S., Lio P., Goldman N. (2001): Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends Genet., 17: 262-272. Go to original source... Go to PubMed...
  36. Yang Z. (1994): Estimating the pattern of nucleotide substitution. J. Mol. Evol., 39: 105-111. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.