Plant Soil Environ., 2015, 61(6):285-290 | DOI: 10.17221/274/2015-PSE

Changes in the contents of amino acids and the profile of fatty acids in response to cadmium contamination in spinachOriginal Paper

V. Zemanová1, M. Pavlík2, D. Pavlíková1, P. Kyjaková3
1 Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
2 Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
3 Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Changes of amino acid (AAs) contents (glutamic acid - Glu, aspartic acid - Asp) and fatty acids profile (FAs) in spinach under cadmium (Cd) soil contamination (Cd1 = 30, Cd2 = 60, Cd3 = 90 mg/kg soil) are reported here. Spinach plants were sampled 25, 40, 55 and 75 days after sowing. Growing Cd soil contamination was associated with the strong inhibition of above-ground biomass (23.5-6.3 g dry matter per pot) and with the enhancement of Cd content (0.60-72.38 mg/kg dry matter) in leaves. During 55 days of plant growing the increase of Glu and Asp content was associated with the enhancement of Cd content. The highest accumulation of AAs was determined on Cd3 treatment after 55 days of cultivation. Strong decreases of both AAs were confirmed in the last sampling period for Cd treatments (reduction of Glu content of Cd3 treatment to ca. 64% and Asp content to ca. 72% in contrast to control). The content of saturated fatty acids increased (mainly palmitic acid) and the content of unsaturated fatty acids decreased in spinach aboveground biomass with increasing Cd concentration. Results of multivariate analysis of variance MANOVA showed the significant effect of Cd contamination for FAs metabolism, but the most significant effect was confirmed for plant growing period.

Keywords: abiotic stress; heavy metals; peroxidation of lipids; Spinacia oleracea L.

Published: June 30, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zemanová V, Pavlík M, Pavlíková D, Kyjaková P. Changes in the contents of amino acids and the profile of fatty acids in response to cadmium contamination in spinach. Plant Soil Environ. 2015;61(6):285-290. doi: 10.17221/274/2015-PSE.
Download citation

References

  1. Cakmak I. (2000): Tansley Review No. 111 - Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, 146: 185-205. Go to original source... Go to PubMed...
  2. Chaffei C., Pageau K., Suzuki A., Gouia H., Ghorbel M.H., Masclaux-Daubresse C. (2004): Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant and Cell Physiology, 45: 1681-1693. Go to original source... Go to PubMed...
  3. Cuypers A., Plusquin M., Remans T., Jozefczak M., Keunen E., Gielen H., Opdenakker K., Nair A.R., Munters E., Artois T.J., Nawrot T., Vangronsveld J., Smeets K. (2010): Cadmium stress: An oxidative challenge. Biometals, 23: 927-940. Go to original source... Go to PubMed...
  4. Gallego S.M., Pena L.B., Barcia R.A., Azpilicueta C.E., Iannone M.F., Rosales E.P., Zawoznik M.S., Groppa M.D., Benavides M.P. (2012): Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany, 83: 33-46. Go to original source...
  5. Küpper H., Küpper F., Spiller M. (1998): In situ detection of heavy metal substituted chlorophylls in water plants. Photosynthesis Research, 58: 123-133. Go to original source...
  6. Lux A., Martinka M., Vaculík M., White P.J. (2010): Root responses to cadmium in the rhizosphere: A review. Journal of Experimental Botany, 62: 21-37. Go to original source... Go to PubMed...
  7. Martin S.R., Llugany M., Barceló J., Poschenrieder C. (2012): Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes. Biologia Plantarum, 56: 729-734. Go to original source...
  8. Nouairi I., Ben Ammar W., Ben Youssef N., Daoud D.B.M., Ghorbal M.H., Zarrouk M. (2006): Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Science, 170: 511-519. Go to original source...
  9. Pavlík M., Pavlíková D., Staszková L., Neuberg M., Kaliszová R., Száková J., Tlustoš P. (2010): The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicology and Environmental Safety, 73: 1309-1313. Go to original source... Go to PubMed...
  10. Pavlík M., Pavlíková D., Zemanová V., Hnilička F., Urbanová V., Száková J. (2012): Trace elements present in airborne particulate matter - Stressors of plant metabolism. Ecotoxicology and Environmental Safety, 79: 101-107. Go to original source... Go to PubMed...
  11. Pavlíková D., Pavlík M., Vašíčková S., Száková J., Tlustoš P., Vokáč K., Balík J. (2002a): The effect of soil properties on cadmium bonds to organic substances of spinach biomass. Applied Organometallic Chemistry, 16: 187-191. Go to original source...
  12. Pavlíková D., Pavlík M., Száková J., Vašíčková S., Tlustoš P., Balík J. (2002b): The effect of Cd and Zn contents in plants on Fe binding into organic substances of spinach biomass. Rostlinná Výroba, 48: 531-535. Go to original source...
  13. Pavlíková D., Pavlík M., Staszková L., Motyka V., Száková J., Tlustoš P., Balík J. (2008): Glutamate kinase as a potential biomarker of heavy metal stress in plants. Ecotoxicology and Environmental Safety, 70: 223-230. Go to original source... Go to PubMed...
  14. Pavlíková D., Zemanová V., Procházková D., Pavlík M., Száková J., Wilhelmová N. (2014a): The long-term effect of zinc soil con tamination on selected free amino acids playing an important role in plant adaptation to stress and senescence. Ecotoxicology and Environmental Safety, 100: 166-170. Go to original source... Go to PubMed...
  15. Pavlíková D., Pavlík M., Procházková D., Zemanová V., Hnilička F., Wilhelmová N. (2014b): Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis. Journal of Plant Physiology, 171: 559-564. Go to original source... Go to PubMed...
  16. Sandalio L.M., Dalurzo H.C., Gómez M., Romero-Puertas M.C., del Río L.A. (2001): Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52: 2115-2126. Go to original source... Go to PubMed...
  17. Savchenko T.V., Zastrijnaja O.M., Klimov V.V. (2014): Oxylipins and plant abiotic stress resistance. Biochemistry (Moscow), 79: 362-375. Go to original source... Go to PubMed...
  18. Stránský K., Jursík T. (1996): Simple quantitative transesterification of lipids. 1. Introduction. European Journal of Lipid Science and Technology, 98: 65-71. Go to original source...
  19. Upchurch R.G. (2008): Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters, 30: 967-977. Go to original source... Go to PubMed...
  20. Verbruggen N., Hermans C., Schat H. (2009): Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12: 364-372. Go to original source... Go to PubMed...
  21. Verdoni N., Mench M., Cassagne C., Bessoule J.J. (2001): Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environmental Toxicology and Chemistry, 20: 382-388. Go to original source... Go to PubMed...
  22. Vitória A.P., Lea P.J., Azevedo R.A. (2001): Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry, 57: 701-710. Go to original source... Go to PubMed...
  23. Vollmann J., Lošák T., Pachner M., Watanabe D., Musilová L., Hlušek J. (2015): Soybean cadmium concentration: Validation of a QTL affecting seed cadmium accumulation for improved food safety. Euphytica, 203: 177-184. Go to original source...
  24. Xu J., Sun J., Du L., Liu X. (2012a): Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytologist, 196: 110-124. Go to original source... Go to PubMed...
  25. Xu J., Zhu Y., Ge Q., Li Y., Sun J., Zhang Y., Liu X. (2012b): Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. New Phytologist, 196: 125-138. Go to original source... Go to PubMed...
  26. Zemanová V., Pavlík M., Pavlíková D., Tlustoš P. (2013): The changes of contents of selected free amino acids associated with cadmium stress in Noccaea caerulescens and Arabidopsis halleri. Plant, Soil and Environment, 59: 417-422. Go to original source...
  27. Zemanová V., Pavlík M., Kyjaková P., Pavlíková D. (2015): Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress. Journal of Plant Physiology, 180: 27-34. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.